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ABSTRACT 

Hourly simulations of extraction fluid temperatures from borehole heat exchangers tend to be very time consuming. A new 

load aggregation scheme to perform long-term simulations of borehole heat exchangers is presented. The starting point is the 

step-response function for the considered borehole heat exchanger and the corresponding long sequence of cells, each with a 

load and a weighting factor. On the first level, the original weighting factors are kept. On the following levels, 2, 4, 8, etc., 

the weighting factors are lumped together. The lumped weighting factors are obtained directly from the step-response 

function. The number of cells to be lumped together is chosen so that the extraction temperatures using lumped weighting 

factors give a sufficiently good approximation of the non-aggregated scheme. The new scheme is applied to a test case to 

simulate extraction fluid temperature over a 20-year time period. Comparison of the results from the new scheme with the 

non-aggregated setting shows that the new scheme can perform very accurate and fast simulations of borehole heat 

exchangers.   

BACKGROUND 

Modeling and simulation of borehole heat exchangers is a topic of active research in the field of ground source heat 

pump (GSHP) system applications. The main research interest is conducting multi-year simulations to accurately determine 

the extraction fluid temperature for a prescribed sequence of heating and cooling loads on a borehole heat exchanger. It is 

customary to run 20-year or longer simulations to study the effect of long-term heat injections and extraction on the fluid 

temperature exiting the borehole system. The performance of the heat pump and the overall system depends on the extraction 

fluid temperature from the borehole heat exchanger. The loads on the borehole heat exchanger depend on the heating and 

cooling demands of the building. The borehole heat exchanger loads and the heating and cooling demands of the building are 

both typically presented using annual hourly values. However, hourly simulations of a borehole heat exchanger performed 

over a number of years require a great deal of computational time. This has lead to the development of various load 

aggregation schemes to reduce the computational time requirements when performing multi-year simulations of borehole 

heat exchangers.  

Yavuzturk and Spitler (1999) developed an aggregation scheme that lumps the hourly loads on a borehole heat 

exchanger into larger blocks of time. They used aggregated blocks of 730 hours (i.e., 1 month). Each block uses a single 

average value to represent the aggregated monthly loads. Yavuzturk and Spitler kept a minimum waiting period of 192 hours 

for which the loads are not aggregated. Murugappan (2002) later extended the model of Yavuzturk and Spitler to also include 

sub-hourly loads. Most existing commercial tools (Spitler, 2000; Hellström and Sanner, 1994) to design borehole heat 

exchangers also use monthly aggregated values of heating and cooling loads. When determining minimum or maximum 
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extraction fluid temperatures for a particular month, these tools superimpose the peak loads of that month on the aggregated 

load values. Bernier proposed two load aggregation schemes for borehole heat exchangers. The first scheme (2001), called 

the simple load aggregation algorithm (SLAA), divides the borehole heat exchanger loads into two time periods. The loads in 

the first time period are aggregated and a single mean value for the borehole loads is used. The loads in the second period are 

not aggregated. Bernier et al. (2004) later revised the SLAA to a more comprehensive Multiple Load Aggregation Algorithm 

(MLAA). The MLAA categorizes the borehole heat exchanger loads into “immediate” and “past” time periods. The loads in 

the immediate time period (Xh) are not aggregated. The past time period is divided into blocks of daily aggregated (Xd), 

weekly aggregated (Xw), monthly aggregated (Xm), and yearly aggregated (Xy) loads. The duration of periods Xh, Xd, Xw, and 

Xm, as suggested by the authors, is 12, 48, 168, and 360 hours. Liu (2005) presented the so-called hierarchical load 

aggregation scheme. This scheme uses aggregation blocks at three levels for small, medium, and large time periods. A small 

block represents the aggregated loads for up to 24 hours. The waiting period for a small block is 12 hours. A medium block 

consists of 5 small blocks. The waiting period for a medium block is equal to 3 small blocks. A large block is made up of 73 

medium blocks. The waiting time for a large block is equal to 40 medium blocks. More recently, Marcotte and Pasquier 

(2008) used a geometrical scheme for aggregation of borehole loads. The scheme uses a waiting period of 48 hours for which 

the loads are not aggregated. The remaining loads are aggregated using a geometrical pattern, i.e., loads are aggregated for 

hours 49–50, 51–54, 55–62, 63–78, 79–110, 111–174, 175–302, 303–558, and so on. 

This paper presents a new aggregation scheme to perform rapid and accurate multi-year simulations. The new scheme 

uses the step-response function for the considered borehole heat exchanger and the corresponding long sequence of loads, 

each with a weighting factor. The loads are placed in a long sequence of “cells”. The original weighting factors are kept 

without aggregation on the first level. On the following levels, 2, 4, 8, etc., the loads are aggregated. We get lumped loads in 

lumped or aggregated cells. The lumped weighting factors are obtained directly from the step-response function. The number 

of lumped cells on level q is Pq. The number Pq is chosen so that the extraction temperatures using lumped weighting factors 

give a sufficiently good approximation of the original full sum. A particular feature of the presented model is that it does not 

involve any natural periods (year with monthly averages, week, day, etc.) or any pulses to represent peak load conditions. 

The choice of lumped cells is only determined from the response function and its weighting factors. The method, proposed by 

Marcotte and Pasquier (2008), corresponds to the choice P1=48 and Pq=1 for q>1.  

TEMPERATURE RESPONSE FOR A HEAT INJECTION STEP 

Let Qstep (W or Btu/h) be a constant heat injection rate starting at t=0 for a single vertical borehole or a system of 

multiple vertical boreholes. The required temperature of the heat carrier fluid in the pipes of the boreholes to sustain this 

injection rate is a basic tool in the analysis of the dynamic relations between heat injection/extraction and fluid temperatures. 

This step-response temperature Tstep(t) (K or °F), or so-called g-function (Eskilson, 1987), increases monotonously from zero 

at t=0 to a steady-state value at very large times.  

 

  
Figure 1  Temperature response Tstep(t) for a heat injection step for 1, 3, and 9 boreholes. 
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The step-response solution for temperature concerns the excess temperature above undisturbed ground and the borehole 

conditions. This means that the initial temperature of the ground and the borehole with the heat carrier fluid is zero for the 

step-response solution. The annual temperature variation at the ground surface influences the first few meters of the ground. 

Its influence on the borehole fluid temperatures is quite small. Neglecting this variation, there remains a constant temperature 

at the ground surface, and the excess temperature at the ground surface is zero for t≥0. Examples of step-response functions 

for 1, 3, and 9 boreholes are shown in Figure 1 (Claesson and Javed, 2011). 

The steady-state temperature (minus the zero temperature at the ground surface) defines the thermal resistance Rss (K/W 

or h∙°F/Btu) between the heat carrier fluid and the ground surface: 

 
step ss step ss step step

( ) 0 , ( ) / .T R Q R T Q     
 

(1) 

TEMPERATURE RESPONSE FOR PIECE-WISE CONSTANT INJECTION RATES 

In this study, the prescribed heat injection rate is treated as constant during each time step, n: 

 
 in max max max

, , 1,... ;
n

Q t Q nh h t nh n n t n h     
 

(2) 

The value of Qin(t) is negative for heat extraction from the ground. The length of the time step h (seconds or hours) may be 

chosen at will.  The number of pulses nmax is very large to cover a calculation period up to, say, tmax= 20 years.  

The fluid temperature, Tf (nh), at the end of pulse n due to the preceding pulses may be obtained by superposition of the 

solution from each of the preceding pulses Qn+1-ν, ν=1, … n. 
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(3) 

Here, ν enumerates the pulses backwards in time. By superposition, pulse ν may be considered a step that starts at the time νh 

before t=nh minus a second step that starts at the time νh-h before t=nh, as given by the expression within the brackets.  

A second notation for the injection values is used: 
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(4) 

The fluid temperature at time step n is given by the sum (3) of the preceding injection rates times a factor that depends on ν: 
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(5) 

The thermal resistance factors Rν (K/W or h∙°F/Btu) and the dimensionless factors κν are given by (1): 
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(6) 

An advantage of using the thermal resistance factors Rν (K/W or h∙°F/Btu) is that the final steady-state value Tstep(∞) is not 

needed. But the dimensionless weighting factors κν directly give the relative influence of the preceding injection rates. The 

weighting factor is determined by the increase of the step-response function over the time from νh-h to νh divided by the total 

increase of Tstep(t) from zero to infinity. The sum of the weighting factors tends to 1 as ν tends to infinity, (16).  

The calculations are performed for consecutive time steps. The loads are shifted one step from time n-1 to n: 

 
( ) ( 1) ( )

1 1 in
, 1,... 1, ( ).

n n n
Q Q n Q Q nh
 





   

 
(7) 

The required number of terms in the summation (5) increases with the number of time steps. After 10 years with h=1 hour, a 

summation of 87,600 preceding values is required. The weighting factors decrease strongly with ν, but the factors for larger ν 

cannot be neglected since there are so many. For the single borehole of Figure 1, we have (h=1 hour):  

532 ASHRAE Transactions



 

 

 
5 7

1 2 24 30 24 365 24 10
0.25, 0.07, 0.003, 8 10 , 4 10 .    

 

  
      

 
(8) 

The idea of using some kind of aggregated values for preceding loads in suitable time intervals before the considered time 

lies near at hand.  

LOAD AGGREGATION  

The long sequence of loads, or cells with a prescribed load in each cell, is aggregated into larger, lumped cells in the 

following way. The original cells from ν=1 to the value ν=P1 are kept on the first level q=1. Then the cells are doubled to 2h 

for P2 lumped cells. On the third level q=3, the cells are again doubled to the width 4h. This doubling is continued up to the 

last level qmax. The number of lumped cells with the width 2q-1 on level q is Pq. The numbers Pq are chosen so that a suitable 

accuracy is obtained by comparing the sequence of fluid temperatures for the original and lumped-load sequences. The width 

of lumped cells on level q, the very last ν-value, and the number of lumped cells become: 

 max max

1

max max max lumped cells

1 1

2 , 1,... ; ; .
q q

q

q q q q

q q

r q q P r n N P


 

      
 

(9) 

The value qmax is chosen so that νmax exceeds the required number of original loads, which typically is of the order 200,000. In 

the example below, we have used Pq=5 for all q levels. This choice was made to provide good accuracy. Then qmax becomes 

16, and the number of lumped cells is 5·16=80. The number of loads is reduced from 200,000 to 80. It may be noted that the 

choice (9), left, i.e., a doubling for each level, is not necessary. All formulas are valid for any choice of the number rq. 

However, the doubling worked so well that we did not see a reason to test any other choices.  

We need to keep track of the ν-values for each lumped cell p on any q-level. Let νq,0 denote the very last ν-value on 

level q-1, and νq,p the last ν-value in lumped cell p on level q. Then we have: 
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(10) 

The ν-values from 1 to νmax may now be enumerated in the following way: 

 
, max

( , , ) , 1,... , 1,... , 0,... 1.
q p q q
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(11) 

The sum (5), which gives the fluid temperature at time step n, may now be written in the following way: 
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(12) 

Here, we take the sum up to νmax, based on the definition of zero loads for ν>n, (4) right. We will use a suitable average load 

in each lumped cell p on level q: 
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(13) 

In the aggregated representation of the loads, we get the following approximation: 
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(14) 

The lumped weighting factor is equal to the sum of the corresponding original weighting factors, (5) right: 
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(15) 
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The original weighting factors, (6) right, are inserted in the sum. All intermediate terms cancel and the simple 

difference above is obtained. The lumped weighting factor is determined by the increase of the step-response function over 

the “time window” of cell q, p divided by the total increase of Tstep(t) from zero to infinity.  

It should be noted that the sum of all the lumped factors and the sum of all original weighting factors are equal, and 

given by step-response function over the time span from zero to the last time νmaxh. This sum tends to 1 as the number of cells 

νmax tends to infinity. 

 max max

step max step

, max

1 1 1step
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(16) 

TIME-SHIFT OF AGGREGATED LOADS 

The original sequence of loads is shifted one cell position at each time step n, (7).  This corresponds to a time 

displacement h. The problem is how to do this time displacement h for the aggregated cells with the width 2h, 4h, etc. The 

immediate answer is to displace the lumped cells the length h and conserve the energy.  

This gives the following set of equations to calculate the aggregated loads at step n from the values at step n-1: 

 ( ) ( ) ( 1)

1,0 in max ,0 1,
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(17) 

The shift for the aggregated cell q,p is given on the lower line. One value from cell p-1 is shifted into the cell and one value 

from the cell is shifted out of the cell, as shown within the brackets. This difference divided by the width rq of the aggregated 

cell gives the change of the average value in the aggregated cell in the time shift. The first line ensures that the formulas are 

also valid for p=1. The new heat injection at time n is put in cell 1,0, and the old value in cell q-1,Pq is put into cell q,0. 

TIME-SHIFT DISPERSION 

Figure 2 illustrates the energy-conserving displacement h for two cells with the width h followed by lumped cells with 

the width 2h. All loads are zero, except for a single value +1, which moves one step h to the right for each time step, as 

shown by the dot. In the third displacement, the left-hand half of the first lumped cell has the value +1 and the right-hand part 

0. Energy conservation requires that the lumped cell load is 1/2. In the next displacement, the left-hand part of the first 

lumped cell is 0 and the right-hand part 1/2, which gives the mean value 1/4. The value +1 of the original pulse is 

increasingly spread out for each time step. 

 

 

Figure 2 Aggregated loads using energy-conserving displacement h for lumped cells with the width 2h causing a 

time-shift dispersion.  

Time step n h h 2h 2h 2h 2h 2h 

1 1 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 

3 0 0 1/2 0 0 0 0 

4 0 0 1/4 1/4 0 0 0 

5 0 0 1/8 2/8 1/8 0 0 

6 0 0 1/16 3/16 3/16 1/16 0 

7 0 0 1/32 4/32 6/32 4/32 1/32 
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The same type of “time-shift dispersion” occurs for lumped cells on all higher levels (q>2). This error in the 

representation of the load sequence is rather insidious. Energy is conserved but differences between neighboring loads are 

smeared out.   

A way to analyze this is to note that the problem is due to the mixing of loads to an average within the lumped cells. 

The remedy is to minimize the mixing. This is discussed in some detail in Claesson (2012). See also Appendix A in Wentzel 

(2005). Consider again the single value +1 that moves one cell to the right at each time step. The mixing of 0 and +1 to 1/2 is 

unavoidable when +1 is moved into the first lumped call with the width 2h. In the displacement, when +1 is to be moved to 

the first cell on level q=2, we may instead add an extra cell so that the number of cells on the first level is P1+1. In the 

following displacement 0 in cell p=P1 and +1 in cell p=P1+1 are added and put as the first value 1/2 on level q=2, while the 

number of cells on level q=1 switches back to P1, and the number of cells on level q=2 is increased to P2+1. The number of 

the cell floats between two consecutive values. After two more steps, 0+0 is put into the first cell on level q=2 and the value 

1/2 is displaced to the second cell. This procedure means that the value 1/2 is maintained without further mixing until the 

lumped value meets the next level q=3.  The procedure using a floating representation is used on all levels q. The effect is 

that the value +1 becomes 1/2 in the cells on level q=2, 1/4 on level q=3, etc.  

This floating representation is somewhat intricate. A further problem is to get the lumped values (13) from the floating 

representation. It is actually possible to do this in an exact way, as described in Claesson (2012). The final formulas are 

surprisingly simple. There is a set of equations of the same complexity as (17) for the relations between the fixed and floating 

representation of the lumped loads, and another set of equations for the time shifts in the floating representation, essentially 

on the same level of (computational) complexity. 

The above model, using a floating representation of the loads with minimized mixing, has been compared to the exact 

full sum (5) for the load sequence used below in the comparison of the energy-conservation method presented in this paper. 

The errors in the latter case are shown in Table 3 for different choices of Pq. The errors for the floating representation are 

between 30 to 70% smaller than those using the energy-conservation method. The differences between the two methods are 

moderate. One reason for this is probably that the weighting factors vary slowly with ν so that the spurious time-shift 

dispersion does not introduce a large error.
 

SUMMARY OF REQUIRED CALCULATIONS 

The method presented in this paper requires the step-response function and the heat loads as input: 

 
step max in max

( ), 0 (or 0 ); ( ), 1,... .T t t t t Q nh n n     
 

(18) 

The time step h and the magnitude of the injection step, Qstep, may be chosen at will. The number of cells Pq at all levels q, 

and the number of levels, qmax, must also be specified. We will use the same number of cells on all levels. The following 

quantities are calculated initially from (1), (9), (10), and (15): 

 
ss max , ,

, , , , .
q q p q p

R r   
 

(19) 

For each time step starting from n=1, the lumped loads are calculated from (17). The initial values for n=0 are zero for all 

aggregated cells q,p. Then, the current fluid temperature is given by the sum (14).
 

AN EXAMPLE 

The synthetic ground load profile suggested by Pinel (2003) is used to perform a multi-year simulation of a borehole 

heat exchanger. The synthetic load profile is shown in Figure 3. Multi-year simulation is performed for loads of Figure 3 

repeated yearly for the simulation period. The load profile has been used by many researchers, including Bernier et al. (2007), 

Lamarche and Beauchamp (2007), and Lamarche (2009), when performing GSHP system simulations. Further details of the 

load profile can be found in the research of Pinel (2003).  
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Figure 3  Synthetic load profile of Pinel (2003) used to perform multi-year simulations.   

As a step-response function, we use the case of one borehole in Figure 1. The step-response function was developed by 

the authors for time scale from minutes to decades. The step-response is obtained by using an analytical radial solution (Javed 

and Claesson, 2011) for shorter time periods and a finite line-source solution for longer time periods. Further details of the 

solution can be found elsewhere (Claesson and Javed, 2011). First, we use non-aggregated loads to simulate the fluid 

temperatures from the step-response function of Figure 1 and the load profile of Figure 3. The computational times (using an 

Intel® dual core 2.10 Ghz processor) for a direct calculation of the original sum (5) are given in Table 2. Using non-

aggregated loads, it takes 14 seconds for a 1-year simulation, 22 minutes for a 10-year simulation, and 88 minutes for a 20-

year simulation. The simulated fluid temperatures for the 20th year using non-aggregated loads are shown in Figure 4. The 

temperatures lie in the range from -4 to +9 °C (25 to 48 °F).             

Next, we use the proposed aggregation scheme to simulate the fluid temperatures. We use the same Pq on all levels. For 

the first case, we take Pq=5. The calculations are performed for 20 years with the time step h=1 hour. The number of 

calculation steps becomes nmax=20·365·24=175,200. Then, we need to take qmax=16. The number of aggregated cells 

becomes 5·16=80. The right-hand limits νq,p of the aggregated cells  are calculated from (9) and are given in Table 1, left. In 

the first line, q=1, the first 5 cells are given. In the second line, the right-hand values of the doubled cells, 7 to 15, are shown. 

The value 5 from the first line is shown for p=0. We see on the last line that 16 levels are needed to exceed nmax.  

The lumped weighting factors are calculated from (15) and are shown in Table1, right. The values are quite instructive. 

The first value, 0.246, means the first cell has 25% of the influence on the extraction temperature. A lumped weighting factor 

of 0.01 (=10/1000) represents an influence of 1%. It should be kept in mind that the weighting factors are multiplied by the 

corresponding loads in the sum (14) for the extraction temperature. 

 

 

Figure 4  20th year fluid temperatures using non-aggregated loads.   
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Table1.   The Limits νq,p of the Aggregated Cells (Left) and the Lumped Weighting Factors 1000·κq,p (Right). 

  

The computational times for the new aggregation scheme are given in Table 2 for simulation times from 1 to 20 years. These 

times depend on the computer, but the relative times of aggregated and non-aggregated schemes are what are of interest. The 

sum (5) for the non-aggregated scheme is calculated for n from 1 to nmax, which means the number of operations increases as 

(nmax)
2. This is in good agreement with the times in the right-hand column for the non-aggregated scheme. The number of 

operations in the aggregated scheme are proportional to qmax·Pq·nmax. The saving of calculation time becomes proportional to 

nmax. For a calculation period of 20 years, the aggregated scheme is 200 times faster.  

Table 2.   Computational Times for the New Scheme (Pq=5) and for Non-aggregated Loads. 

Simulation Time 
 Computational Time, seconds (minutes) 

New Aggregation Scheme Non-aggregated Loads 

1 year 3 14 (< 1) 

2 years 4 59 (1) 

3 years 5 131 (2.2) 

5 years 7 330 (5.5) 

10 years 14 1321 (22) 

20 years 25 5289 (88) 

 

 

 

Figure 5 Temperature differences in simulated fluid temperatures for the 20th year from the new aggregation 

scheme (Pq=5) and the non-aggregated scheme. 

 0 1 2 3 4 5 
1 0 1 2 3 4 5 
2 5 7 9 11 13 15 
3 15 19 23 27 31 35 
4 35 43 51 59 67 75 
5 75 91 107 123 139 155 
6 155 187 219 251 283 315 
7 315 379 443 507 571 635 
8 635 763 891 1019 1147 1275 
9 1275 1531 1787 2043 2299 2555 

10 2555 3067 3579 4091 4603 5115 
11 5115 6139 7163 8187 9211 10235 
12 10235 12283 14331 16379 18427 20475 
13 20475 24571 28667 32763 36859 40955 
14 40955 49147 57339 65531 73723 81915 
15 81915 98299 114683 131067 147451 163835 
16 163835 196603 229371 262139 294907 327675 

 

 1 2 3 4 5 
1 245.7 68.1 35.7 23.3 17.1 
2 24.4 17.4 13.5 11.0 9.3 
3 15.1 12.0 10.0 8.6 7.5 
4 12.6 10.4 8.8 7.7 6.8 
5 11.6 9.6 8.1 7.1 6.3 
6 10.9 9.2 7.9 6.9 6.2 
7 10.7 9.0 7.8 6.8 6.1 
8 10.5 8.9 7.7 6.7 6.0 
9 10.4 8.7 7.5 6.6 5.9 

10 10.2 8.5 7.4 6.5 5.7 
11 9.9 8.3 7.1 6.2 5.5 
12 9.4 7.9 6.7 5.9 5.2 
13 8.8 7.3 6.2 5.4 4.7 
14 8.0 6.5 5.5 4.7 4.1 
15 6.8 5.4 4.5 3.8 3.2 
16 5.2 4.0 3.2 2.6 2.1 
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Table 3.   Maximum Absolute Error in Fluid Temperatures Simulated for 20 Years Using the New 
Scheme and Non-aggregated Loads for Different Values of Pq  

Pq  Maximum Absolute Error, K (°F) 

1 0.300 (0.540) 

2 0.132 (0.238) 

3 0.077 (0.139) 

5 0.039 (0.070) 

10 0.018 (0.032) 

20 0.006 (0.011) 

 

The errors in using the aggregated scheme are given by the differences between the fluid temperatures calculated both ways. 

These differences are shown in Figure 5 for the last, 20th year. The maximum difference for all fluid temperatures during the 

20-year period (175,200 values) was calculated as 0.039 K (0.070 °F). This should be compared to the fluid temperatures that 

lie in the range from -4 to +9 °C (25 to 48 °F). The accuracy of the aggregation scheme is quite good for the choice of Pq 

equal to 5. Table 3 shows this maximum absolute error for all Pq equal to 1, 2, 3, 5, 10, and 20. We see that Pq=1 perhaps 

gives too large an error. On the other hand, Pq=20 gives a very small error. The choice of Pq has minor effect on the required 

computational time and any value of the above Pq can be chosen to attain the desired accuracy level without significant 

influence on the computational time.   

CONCLUSIONS 

Energy simulations of ground source heat pump systems are critical for design and operation optimization of these 

systems. However, hourly simulations of borehole heat exchangers performed for multiple years are very time consuming. 

The extraction fluid temperature depends on a long sequence, backwards in time, of heat extraction and injection rates. In this 

paper, we present a new load-aggregation scheme to perform multi-year simulations of borehole heat exchangers. The 

starting point is the step-response function for the considered borehole heat exchanger and the corresponding long sequence 

of cells, each with a load and a weighting factor. The aggregation is performed on different levels. At the first level, the 

original weighting factors are kept. At levels 2, 4, 8, etc., weighting factors are lumped together. The accuracy of the scheme 

depends on the number of lumped cells on each aggregation level. The number of cells to be lumped can be chosen freely to 

obtain the desired accuracy level. A choice of 5 lumped cells on each of 16 aggregation levels required for a 20-year 

simulation gives a maximum absolute error of 0.039 K (0.070 °F) compared to a non-aggregated scheme. Some 80 

aggregated loads were used, and the new scheme proved 200 times faster than the non-aggregated case. 

 

NOMENCLATURE 

h   =  time step (s) 

p   =  cell numbers on level q  

Pq   =  number of aggregated cells on level q  

Qin(t) =  prescribed heat injection (W or Btu/h) 

Qn   =  prescribed heat injection rate at time step n (W or Btu/h) 

Qstep   =  amplitude of heat injection step (W or Btu/h) 

  
   

  =  heat injection rate pulse ν at time step n (W or Btu/h) 

     
   

  =  heat injection rate for aggregated cell q,p (W or Btu/h) 

q   =  level of aggregation 

Rss   =  thermal resistance between carrier fluid and ground surface (K/W or h∙°F/Btu) 

Rν   =  thermal resistance factor for cell ν (K/W or h∙°F/Btu) 

rq   =  number of original cells in lumped cells of level q 

Tf   =  injection fluid temperature (°C or °F) 
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Tstep(t) =  step-response temperature (K or °F) 

κν   =  original weighting factors  

       =  weighting factor for aggregated cell q,p 

ν   =  enumeration of loads or cells backwards from the current time step n  

νq,p   =  last ν-value in cell q,p 
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