Software within building physics and ground heat storage

EED v3.2

Earth Energy Designer

February 19, 2015

BLOCON

www.buildingphysics.com

Acknowledgements

The development of the fundamentals for EED has been supported by the Swedish Council of Building Research (Byggforskningsrådet), Stockholm, and by the German Federal Ministry for Education, Science, Research and Technology (BMBF), Bonn. The responsibility for content and functioning of the program is with the authors only.

The program implementation has partially been funded by the "Wallenberg Foundation Fellowship Program in Environment and Sustainability" by the Knut and Alice Wallenberg Foundation at Massachusetts Institute of Technology, Cambridge, USA.

The following persons have been involved in the development of the EED program:

Dr. Thomas Blomberg

www.buildingphysics.com

e-mail: info@blocon.se

Prof. Johan Claesson

Dept. of Building Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden, tel: +46-31-7721996, fax: +46-31-7721993, e-mail: claesson@buildphys.chalmers.se

Dr. Per Eskilson

Dept. of Mathematical Physics, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden

Dr. Göran Hellström

Dept. of Mathematical Physics, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden, tel: +46-46-2229091, fax: +46-46-2224416, e-mail: goran.hellstrom@matfys.lth.se

Dr. Burkhard Sanner

Asternweg 2, D-35633 Lahnau, Germany, tel: +49-6441-963416, fax: +49-6441-962526, e-mail: burkhard.sanner@t-online.de

Contents

1.	INT	RODUCTION
1	1	OVERVIEW
1	2	BACKGROUND OF EED
1	3	System requirements and installation
1	4	DESCRIPTION OF FILES
1	5	IMPORTANT PROGRAM FEATURES
1	6	NEW FEATURES IN VERSION 3.0
1	7	UPDATE EED v3.2
1	8	DOCUMENTATION AND FREQUENTLY ASKED QUESTIONS (FAQ:S)
2.	EED	MAIN MENU
2	2.1	INTRODUCTION
2	2.2	CREATING DEFAULT INPUT
2	2.3	OUTPUT FILES
3.	DAT	A INPUT
3	8.1	GROUND PROPERTIES
3	8.2	BOREHOLE AND HEAT EXCHANGER
3	3.3	BOREHOLE THERMAL RESISTANCE
3	3.4	HEAT CARRIER FLUID
3	8.5	INPUT OF BASE LOAD DATA
З	8.6	INPUT OF PEAK LOAD DATA
3	8.7	SIMULATION PERIOD
4.	CAL	CULATION OF MEAN FLUID TEMPERATURE 29
5.	OUT	TPUT OF RESULTS
5	5.1	INTRODUCTION
5	5.2	CHANGING CHART PROPERTIES

	5.2.1	Introduction				
	5.2.2	Chart and series properties				
6.	CALCU 37	ULATION OF REQUIRED BOREHOLE LENGTH FOR GIVEN FLUID TEMPERATURE CONSTR	RAINTS			
7.	ΟΡΤΙΝ	MIZATION OF BOREHOLE LENGTH AND COST41				
8.	COST	DATA42				
9.	CHAN	IGE OF UNITS43				
10.	MU	ILTILINGUAL OPTION47				
1	0.1	INTRODUCTION				
1	0.2	How to create files for a new language				
11.	UPD	DATE EED V3.249				
1	1.1	INTRODUCTION				
1	1.2	NEW LICENSE MANAGEMENT SYSTEM				
1	1.3	INSTALLATION TO NEW FOLDERS				
1	1.4	EXPORT TO EXCEL IMPROVED				
1	1.5	UPDATED LANGUAGE FILES				
12.	LITE	ERATURE				
API	APPENDIX A. OUTPUT DATA FILE "MANUAL_E.OUT"					
API	APPENDIX B. OUTPUT DATA FILE "MANUAL_X.OUT"60					
ΑΡΙ	APPENDIX C. DATA OUTPUT FILES					
ΑΡΙ	APPENDIX D. LIST OF POSSIBLE BOREHOLE CONFIGURATIONS.					

1. Introduction

1.1 Overview

Earth Energy Design (EED) is a PC-program for borehole heat exchanger design. Its ease of use, short learning curve, quick calculation times and inherent databases make it a useful tool in everyday engineering work for design of ground source heat pump system (GSHP) and borehole thermal storage. In very large and complex tasks EED allows for retrieving the approximate required size and layout before initiating more detailed analyses. Even for very small plants EED values the effort to do a calculation instead of using rules of thumb is worthwhile. In ground source heat pump system, heat is extracted from the fluid in the ground connection by a geothermal heat pump and distributed to the building. The fluid is then re-warmed as it flows through the ground. In cooling mode, the process is reversed. This makes it a renewable, environmentally friendly energy source.

1.2 Background of EED

PC-programs for quick and reasonably sound dimensioning of ground heat systems with vertical earth heat exchangers have been presented by Claesson, Eskilson and Hellström, see list of literature in Section 0. Algorithms have been derived from modelling and parameter studies with a numerical simulation model (SBM) resulting in analytical solutions of the heat flow with several combinations for the borehole pattern and geometry (g-functions). Those g-functions depend on the spacing between the boreholes at the ground surface and the borehole depth. In case of graded boreholes there is also a dependency on the tilt angle. The g-function values obtained from the numerical simulations have been stored in a data file, which is accessed for rapid retrieval of data by EED.

Calculation of brine temperatures is done for monthly heat/cool loads. Databases provide the key ground parameters (thermal conductivity and specific heat) as well as properties of pipe materials and heat carrier fluids. The monthly average heating and cooling loads are the input data. In addition, an extra pulse for peak heat/cool loads over several hours can be considered at the end of each month. The user can choose between different methods of establishing a monthly load profile. A printed output report and output graphical processing are provided. The program has an easy-to-use interface. The borehole thermal resistance is calculated in the program, using the borehole geometry, grouting material, pipe material and geometry. The borehole pattern may be chosen at will from a database of 798 basic configurations.

1.3 System requirements and installation

EED v3 is a software package running on Microsoft Vista/Windows 7 and 8. Program and databases require approximately 7 MB hard disk space. EED is delivered as a self-extracting file that installs the program and databases in a folder the user can choose. It will install the following files and a subdirectory named "Projects" where project data files may be stored. It may be a good idea to make further sub-folders for each major project. Also, the EED-icon will be added to the start menu of Windows.

1.4 Description of files

Name	Extension	Content				
Programs and s	Programs and system files:					
EED	exe	Program file EED (executable)				
gfunc3	eed	g-functions				
Databases:						
borediam	txt	Borehole diameter				
cond	txt	Ground thermal conductivity				
fillcond txt	Filling t	hermal conductivity				
gfunc txt	List of g	g-functions				
hcdat	txt	Heat carrier fluids				
heatcap	txt	Ground specific heat				
heatflux	txt	Geothermal heat flow				
pipe	txt	Pipe material				
surftemp	txt	Ground surface temperature				
Language files	txt	See folder Languages				

Project data files have the extension ".dat". Output files have the extension ".out". Project data files can be saved under the "File" menu with the "Save" or "Save as" command:

Output files are generated by EED with the name of the project data file, adding the extension ".out". These files are written in ASCII-code and can be loaded by common text editors (correct display of columns is only achieved with rigid fonts like Courier, not with proportional fonts). The monthly temperatures in the output files are listed in columns and can, after preparation with a text editor, be loaded into graphic software.

The databases are ASCII-text files with the extension ".txt" and can be completed with additional data the user may have, or changed to meet user requirements (sufficient experience is vital!).

1.5 Important program features

Number of configurations	EED version 3: 798 EED version 2: 308
Number of g-functions	EED version 3: 6385 EED version 2: 2465
Types of borehole heat exchangers	Coaxial pipes U-pipes (single, double, triple)
Borehole depth	20 - 200 m
Ratio borehole spacing / borehole depth	$0.02 \le \frac{B}{H} \le 0.5$
Time interval	$-8.5 \le \ln(t') \le 3$
t' = dimensionless time	with: $t' = \frac{t}{2}$ and $t = \frac{H^2}{2}$
a = thermal diffusivity (m²/s)	t_s s $9a$
Short-time criterion	$0.5 \cdot E_1 \frac{r_b^2}{4at}$
$E_1 = exponential integral$	ти

Further details concerning the basic mathematical procedures used for the program can be found in the literature listed at the end of this manual, see Section 0.

1.6 New features in version 3.0

The main news of EED 3.0 are as follows:

- Optimization that gives a list of best solutions for various parameters within specified ranges. Results may be exported to Excel file.
- Simple cost calculation.
- English units added. Easy conversion between SI and English units.
- Pc-program multilingual. New languages can be added. Currently: English, German, Swedish, French, Dutch, Italian, Hungarian. See <u>www.buildingphysics.com</u> for more languages.

- More configurations with large systems (798 as compared with 308 in EED 2.0).
- More G-functions (6385 as compared with 2465 in EED 2.0).
- Improved accuracy (multipoles 1->10). Improved convergence on borehole length.
- Hot water treated separately.
- Flow rate can be given for whole system.
- A default input file can be created.
- List of most recent input files.
- A lot of smaller improvements.

Important notice for users of EED 2.0:

G-function numbers larger than 241 has new numbers in EED 3 due to new configurations. The numbers are not the same as in EED 2. When an old (EED 2.0) input file is read, the old G-func number will be remapped to the new definition. Note however that EED 3.0 input files should not be used by EED 2.0 or EED 1.0.

1.7 Update EED v3.2

Please see chapter 11 for more info about this upgrade.

Update info for new versions can also be found at http://www.buildingphysics.com/index-filer/Page1139.htm

1.8 Documentation and frequently asked questions (FAQ:s)

Please see this page for more info : http://www.buildingphysics.com/index-filer/Page1139.htm

2. EED main menu

2.1 Introduction

Figure 2.1 shows the main menu:

Figure 2.1: Main menu of EED.

File: Operations with files. With the item "**Memory notes**" in the File menu, a text (maximum five rows) can be typed that will be added to the header of the current project data file. This helps to identify the project and to distinguish different variations in the layout.

Input: Input of data for ground, borehole, heat exchanger, heat carrier, building, loads, simulation time, etc.

Cost data: Simple cost data can be given here.

Solve: The calculation may be started in two different ways:

- Calculation of the mean fluid temperature with the given load and layout
- Calculation of the required borehole length for a given min/max temperature

Optimization module

Output: Display of the results as text and graphs

Settings: Settings for language, units, and default input data.

About: Display of program version and authors. Update information.

2.2 Creating default input

EED is started with a default set of input data. The user may change this by creating the file "Default_input.dat" which will be read every time EED starts. This file contains default values and may be changed to a default file for local conditions. To create this file use menu item **Settings/Use current input as default input**. To delete it, use **Settings/Clear default input**.

2.3 Output files

The output files ("*.out") can be further edited. These are ASCII files and may be loaded into common text editors. The databases ("*.txt") are also ASCII-format and can be changed or further improved by experienced users.

3. Data input

The pull-down menu "**Input**", see Figure 3.1, comprises all functions for input or change of the data required for the calculation.

💽 E	arth E	nergy Des	UNTITL			
File	Input	Cost data	Solve	Output	Setting	ıs Help
	Grou	und properti	es		hr -	FED
V 79	Borehole and heat exchanger Borehole thermal resistance					
	Heat carrier fluid				ATT	
	Base Pea	e load k load				
	Simu	ulation perio	ł		P .	
		9			-	

Figure 3.1: The input menu.

There are further sub-menus for specific input of data. These are data for underground parameters ("Ground properties"), boreholes and heat exchangers ("Borehole and heat exchanger"), method of calculation of the borehole thermal resistance ("Borehole thermal resistance"), properties of the heat carrier fluid ("Heat carrier fluid"), base load and peak load data ("Base load" and "Peak load", respectively) and the desired simulation period ("Simulation period").

The following paragraphs show the input option by using a sample project. As example for the calculation of project "Manual_e", data from a plant in the German city of Linden are used.

3.1 Ground Properties

Figure 3.2 shows the menu "**Ground properties**". The input values can either be typed in directly (double-clicking in a field will highlight the contents, and with any new input the old content will be erased), or can be obtained from a database. For any field followed by a question mark, a database can be accessed.

Ground properties	
Thermal conductivity	3.500 ? W/(m·K)
Volumetric heat capacity	2.160 ? MJ/(m³·K)
Ground surface temperature	8.000 ? *C
Geothermal heat flux	0.06000 ? W/m²
	_ <u>Close</u>

Figure 3.2: The ground properties menu.

For demonstration, we now start with "**Thermal conductivity**". If no measured data from the site are available (e.g. from a thermal response test), the value has to be assessed from the database (according to the type of rock or soil). By clicking on the question mark beside the value for thermal conductivity, the database is opened in a new window, see Figure 3.3.

Thermal conductivit	y 🔀
Convert values: No CSI	=> ENG 🔿 ENG => SI
Air at 0 - 20 C	~
recommended	0.02 📃
minimum	0.02
maximum	0.03
Amphibolite	
recommended	2.9
minimum	2.14
maximum	3.55
Andesite	
recommended	2.2
minimum	1.73
maximum	2.22
Anhydrite	
recommended	4.1
minimum	1.52 🔪
morrimum	י יוב 🔛

Figure 3.3: Database of thermal conductivities.

The values are sorted alphabetically by the type of rock. Some additional materials like air and water are also included. For each material, a recommended value is given (to use if no further info exists), and the minimum and maximum values found in literature or measurements. The value will be transferred to the data input box when clicked on. Double-clicking will do the same but also close the database window.

Data for the Linden site are used in our example. The underground consists of tertiary sand, clay, and in greater depth Paleozoic sediments. A plausible average for this subsoil has to be found. Moist sand is well representing the major part of the column, and hence "Sand, moist" is selected in the database. The value can be changed later in the sub-menu, as is done in the example (to 1.5 W/m/K), to represent better the thermal conductivity of the Paleozoic part of the profile.

Specific heat is selected in the same way, and then the annual average temperature at the earth's surface can be chosen ("**Ground surface temperature**"). The database is opened by clicking on the question mark, and after selecting one of the countries for which data are available, a list with names of cities is displayed, see Figure 3.4. The temperatures are a hint for the ground surface temperature of the region. If necessary, interpolation has to be made, or the value for annual average air temperature has to be used. For the example of Linden the value of Giessen is selected. The geothermal heat flux is found in the same way.

Ground surface temp	erature	X
⊂Convert values: ● No	⇒ ENG C) ENG	i => SI
CEDNARY		
GERMANI		
Berlin	8.7	
Bremen	9.0	
Dresden	9.0	
Dusseldorf	11.0	
Frankfurt/M	8.9	
Giessen	9.0	
Hamburg	8.8	
Karlsruhe	10.9	
Köln	11.0	
Leipzig	8.5	
Munchen	8.9	
Nurnberg	8.8	
Saarbrucken	9.0	
Stuttgart	9.1	
ITALY		
Bologna	13.4	
Catania	17.9	
Firenze	13.5	**
FILENZE	10.0	\sim

Figure 3.4: Database of ground surface temperatures.

With ground surface temperature, geothermal heat flux, and thermal conductivity of the ground the undisturbed ground temperature for half of the borehole depth is calculated. Intentionally the geothermal heat flux and not the geothermal gradient is used for calculation to take into account the impact of thermal conductivity. The data for our example that follows are shown below.

Ground properties			
Thermal conductivity	1.500	?	W/(m·K)
Volumetric heat capacity	1.800	?	MJ/(m³·K)
Ground surface temperature	9.000	?	°C
Geothermal heat flux	0.06500	?	W/m²
L.	Close]	

Figure 3.5: Data for our example.

3.2 Borehole and Heat Exchanger

Figure 3.6 shows the menu "**Borehole and heat exchanger**" that deals with borehole data (number, geometry, depth, diameter) and with heat exchanger data. There are two different variations of the submenu, depending upon the type of heat exchanger selected; one for the coaxial type, and one for all U-pipe types. Again, for any field followed by a question mark, a database can be accessed.

Borehole and heat exchanger	
Borehole	
Туре	Coaxial
Config.	0 ?
0 (''1 : single'') Depth	110.0 m
Spacing	10.0 m
Diameter	110.000 🭸 mm
Contact res. outer pipe/ground	0.0000 (m·K)/W
Vol. flow rate Q:	
○ for all boreholes	2.000 _{I/s}
Series factor (1=parallell):	Qbh=Q=2 I/s
Inner pipe	
Outer diameter	50.000 mm
Wall thickness	4.600 7 mm
Thermal conductivity	U.220 W/(m·K)
Outer pipe	
Outer diameter	100.000 mm
Wall thickness	4.000 ? mm
Thermal conductivity	0.400 W/(m·K)
	•

Figure 3.6: Input menu for borehole and heat exchanger.

When starting with the default data file, the heat exchanger type is set to "Coaxial". By clicking on the sign " τ " right of "**Type**", a small pull-down window offers four options as shown in Figure 3.7.

Borehole and heat exchanger			
Borehole			
Туре	Double-U	•	
Config.	3	?	
3 (''4 : 1 x 4, line'') Depth	50.0		m
Spacing	4.0		m
Diameter	130.000	?	mm
Contact res. outer pipe/filling	0.0200		(m·K)/W
Vol. flow rate Q:			
○ for all boreholes		0.270	l/s
Series factor (1=parallell):	Qbh=Q=0.27 I	/s	
U-pipe			
Outer diameter	25.000		mm
Wall thickness	2.300	?	mm
Thermal conductivity	0.420		W/(m·K)
Shank spacing	70.000		mm
Filling thermal conductivity	0.600	?	W/(m·K)

Figure 3.7: Options for heat exchanger type.

The most frequent type in mid Europe, also used in the Linden example, is double-U-pipes:

Next, the borehole geometry ("Configuration") is asked for. This means selection of an adequate g-function.

The basic forms of borehole heat exchanger (BHE) geometry available are as follows:

Geometry	Name
Single BHE	SINGLE
BHE-Layout in a straight line	LINE
BHE-Layout in a line in L-shape	L-CONFIGURATION
BHE-Layout in two parallel L-shaped lines	L2-CONFIGURATION
BHE-Layout in a line in U-shape	U-CONFIGURATION
BHE-Layout in a line forming an open rectangle	OPEN RECTANGULAR CONFIG.
BHE-Layout in form of a rectangular field	RECTANGULAR CONFIG.

Clicking on the question mark to the right of "**Config.**" opens a new window with a list of g-functions to choose from, see Figure 3.8. The number in the first column shows the total number of boreholes in the configuration, followed by the exact geometry; the number in the last column is the number of the configuration (1-798). A list of possible configurations and explanations of the geometry is given in the Appendix D of this manual. Only a certain number of g-functions can be displayed in the window, so it may be necessary to scroll down.

Config			×
SINGLE			~
l : sin	gle	0	
LINE CONF	IGURATION		
2:1x	2, line	1	
3:1x	3, line	2	
4 : 1 x	4, line	3	
5:1x	5, line	4	
6:1x	6, line	5	
7:1x	7, line	6	
8:1x	8, line	7	
9:1x	9, line	8	
10 : 1 x	10, line	9	
11 : 1 x	ll, line	10	
12 : 1 x	12, line	11	
13 : 1 x	13, line	12	
14 : 1 x	l4, line	13	
15 : 1 x	15, line	14	
16 : 1 x	l6, line	15	
17 : 1 x	17, line	16	
18 : 1 x	18, line	17	
19 : 1 x	19, line	18	
20 : 1 x	20, line	19	
25 : 1 x	25, line	20	
L-CONFIGU	RATION		
3:2 x	2, L-configurat	21	~
<u> </u>			

Figure 3.8: List of borehole configurations.

The function for Linden is four holes in a line, which has been selected. The borehole **depth** and borehole **spacing** can now be typed in (50 m and 4 m, respectively, for Linden). No database values fit these parameters so it is given directly instead. In the field "**Diameter**" the borehole diameter is typed. A database, accessible by clicking on the question mark beside the field, suggests usual drilling diameters, including API-standards, see Figure 3.9. In Linden, a 130-mm-diameter-hole has been drilled. A check is made, if the diameter is large enough to house the pipes, and sub-menu cannot be closed if not.

Diameter	×
Convert values:	
() No	C SI => ENG C ENG => SI
73.0 mm	2 7/8"
80 mm	
88.9 mm	3 1/2"
100 mm	
101.6 mm	4"
110 mm	
114.3 mm	4 1/2"
120 mm	
120.7 mm	4 3/4"
127 mm	5 "
130 mm	
139.7 mm	5 1/2"
150 mm	
152 mm	6"
164 mm	6 1/2"
168.3 mm	6 5/8"
180 mm	

Figure 3.9: List of borehole diameter.

The next field in the sub-menu concerns "**Volumetric Flow Rate**". The flow through the pipes in one borehole is considered, in liter/s. EED needs this value to calculate the Reynolds number. In the Linden example approx. 4 m³/h are circulated (0.0011 m³/s), which are distributed to 4 boreholes. Thus the flow through one hole is 0.000275 m³/s (and per pipe is 0.00014 m³/s for a double-U-tube).

The **volume flow rate Q** can be given per borehole or for all boreholes. In the latter case (all boreholes), a "series factor" can be given. The flow rate per borehole then becomes the given value divided by number of boreholes divided by the factor:

Qbh=Q/(Nbh/factor))

If the factor is 1, all boreholes are parallel, i.e. the flow becomes Qbh=Qb/Nbh.


```
Consider another example with 6 boreholes. If these lies in a row (series) we have a series factor of 6:
```

```
Qbh=Q/(6/6)=Q (Q is the flow in each borehole)
```

If they are in series 3 and 3 (series factor 3)

```
ххх
```

=> =>

```
ххх
```

(we have the flow Qbh=Q/(6/3)=Q/2 in each borehole)

and for a factor of 2:

=> x x => => => x x => => (Qbh=Q/(6/2)=Q/3 in each borehole) => x x =>

Now the thermal contact resistance between pipe and borehole fill is asked for ("Contact res. outer pipe/filling"). This value depends on the quality of the grouting operation. When pumping grout into the hole from bottom to top very diligently, a value of $0.0 \text{ m}^2 \cdot \text{K/W}$ is possible, otherwise 0.01 or, with poor fill, 0.02-0.03. In the Linden example, the filling of the borehole from the top does not allow good contact, and hence a value of $0.02 \text{ m}^2 \cdot \text{K/W}$ is typed in.

Now, the material and dimensions of the pipes are given ("Outer diameter", "Wall thickness", "Thermal conductivity"). The values can either be typed into the relevant fields, or the database for pipe material can be opened (for all three parameters simultaneously) by clicking on the question mark to the right. In the Linden example a polyethylene pipe DN25 PN10 (German standard) is used. This and the slightly larger pipe DN32 PN10 are most frequent for borehole heat exchangers in mid Europe. The database also contains data for pipes made from polyethylene, polypropylene, steel, copper and stainless steel. After selection of a pipe, the values (d = diameter, t = wall thickness, l = thermal conductivity) are transferred to the sub-menu by double-clicking on the pipe designation, or by highlighting the pipe name, see Figure 3.10.

Figure 3.10: List of U-pipe measurements.

Now the field "Shank spacing" can be approached. This refers to the distance from centre to centre of the up- and down-pipes in each "U". No database is available here, and the value has to be typed in. With a real BHE in practice, the distance is not constant over the length, and an average has to be used. If spacers are used, the distance achieved by the spacers is relevant. EED checks if the distance is big enough to allow the pipes not to intersect each other, and does not allow closing of the sub-menu if the distance is too small. For pipes with 25 mm diameter, 0.07 m distance is sufficient. The next field ("Filling thermal conductivity") serves for input of thermal conductivity of the borehole fill (grout). Again values can be picked from a database by clicking on the question mark beside the field. For the Linden example, a filling with drilling mud is used, and a value of 0.6 W/m·K is adequate for this.

Now the sub-menu is filled out completely and looks as shown in Figure 3.11. It can be closed by clicking on "**Close**", if no more changes are desired. It is recommended to now and then save the project data file in the "**File**"-menu.

Borehole and heat exchanger			×
Borehole			
Туре	Double-U	•	
Config.	3	?	
3 ("4 : 1 x 4, line") Depth	50.0		m
Spacing	4.0		m
Diameter	130.000	?	mm
Contact res. outer pipe/filling	0.0200		(m·K)/W
Vol. flow rate Q:			
C for all boreholes		0.270	I/s
Series factor (1=parallell):	Qbh=Q=0.27 I.	/s	
U-pipe	25.000		
Outer diameter	23.000		mm
Wall thickness	2.300	?	mm
Thermal conductivity	0.420		W/(m·K)
Shank spacing	70.000		mm
Filling thermal conductivity	0.600	?	W/(m·K)
Close			

Figure 3.11: Data for our example.

The sub-menu "**Borehole and heat exchanger"** is somewhat different, if **coaxial** heat exchangers are selected. A coaxial heat exchanger requires data for outer and inner pipe (typed or picked from the database). EED checks, if the inner pipe fits comfortably into the outer pipe, and does not allow closing of the sub-menu if not. The other parameters are identical with those in the U-pipe sub-menu.

3.3 Borehole thermal resistance

The next sub-menu in the "Input" menu concerns thermal resistances in the borehole ("Borehole thermal resistance"), see Figure 3.12. The values can either be stated, if they are known e.g. from a thermal response test, or can be calculated each time. By clicking on one of the circles in the top left corner of the window, a selection of one of the methods is made.

Borehole thermal resistance	×
 Calculate values Use constant values 	
Account for internal heat transfer	
-Constant values	
Borehole thermal resistance:	
Fluid/ground 0.100 (m·K)/W Internal 0.500 (m·K)/W	

Figure 3.12: Input for Borehole thermal resistance.

Usually the option for calculation will be used. The calculation uses an analytical solution that gives an exact solution of the two-dimensional heat conduction problem in a plane transverse to the borehole axis. The solution consists of an infinite series of multipoles of rapidly decreasing strength (and importance). The accuracy of the solution depends on how many multipoles of the infinite series are evaluated. Four multipoles give a solution exact enough for most purposes, higher numbers will increase the computing time.

The user also choose whether or not to take account for heat transfer between the individual pipes with flow up or down ("Account for internal heat transfer"). The effect of natural convection in groundwater-filled boreholes with U-pipes is not accounted for. For the Linden example, the window will look as shown above. It can now be closed by either clicking on "**Close**" or on the "5" in the upper right corner of the window.

3.4 Heat Carrier Fluid

Now the submenu "**Heat carrier fluid**" is opened by clicking on that item in the "**Input**"-menu, see Figure 3.13. It contains input fields for thermal conductivity, specific heat capacity, density, viscosity and freezing point of the fluid.

Heat carrier flu	d		
Thermal conductivit Specific heat capac Density Viscosity Freezing point	y 0.4530 ity 3565.0000 1068.0000 0.007600 -21.00	?	W/(m·K) J/(Kg·K) Kg/m² Kg/(m·s) °C
	👖 <u>C</u> lose		

Figure 3.13: Input for Heat carrier fluid.

Data for common heat carrier fluids can again be picked from a database, see Figure 3.14, by clicking on the question mark to the right. The values in the database usually refer to a working temperature around 0 °C, which is typical for heat pump operation. Only in the case of pure water, a selection of working temperature levels is given. The database values are transferred simultaneously to the submenu by double-clicking on the required material and concentration, or by highlighting the line and clicking on the "5" in the upper right corner of the database window.

Heat carrier fluid						
neat carrier fiulu						
Convert values:	0.01.000		~	5NO		
(• No	○ SI => ENG		0	ENG => SI		
80 C	0.667	4196.0	971.4	0.000355	0.0	~
85 C	0.670	4200.0	968.5	0.000334	0.0	_
90 C	0.673	4205.0	965.1	0.000315	0.0	
95 C	0.675	4210.0	961.7	0.000298	0.0	
Monoethylenglycole						
25% -14 C	0.480	3795.0	1052.0	0.0052	-14.0	
33% -21 C	0.453	3565.0	1068.0	0.0076	-21.0	
Monopropylenglycole						
25% -10 C	0.475	3930.0	1033.0	0.0079	-10.0	
33% -17 C	0.450	3725.0	1042.0	0.0112	-17.0	-
Methanole						
25% -20 C	0.450	4000.0	960.0	0.0040	-20.0	
Ethanole						
25% -15 C	0.440	4250.0	960.0	0.0076	-15.0	_
Potassium carbonate						=
25% -13 C	0.534	3080.0	1247.0	0.0039	-13.0	
33% -20 C	0.524	2830.0	1336.0	0.0056	-20.0	
Calcium chloride						
20% -18 C	0.530	3050.0	1195.0	0.0037	-18.0	~

Figure 3.14: List of common heat carrier fluids.

In the Linden example monoethylen-glycole is used, and "Monoethylenglycole 33 %" is selected (the exact value in the plant is 29 %) by double-clicking on it.

3.5 Input of Base Load Data

Figure 3.15 shows the input for heating- and cooling-loads. EED offers two input methods. One method, "Annual energy & monthly profile", accepts the whole annual heating and cooling load in MWh and distributes it to the individual months using a given load profile (default values can be changed if necessary). The other method, "Monthly Energy Values", requires the heating and cooling load for each individual month. The first method is fast and is used for smaller plants, while the second allows modelling of a specific load profile including loads independent of seasons, like domestic hot water (EED version 3 also allows a separate annual value for hot water that is spread out equally for the whole the year).

Base load			X					
Base load (without DH	IW):						
Annual energy and monthly profile								
Monthly	O Monthly energy values							
[MWh]	Heat	Cool	Ground					
Annual	16.200	0.000	Update					
SPF	3.00	3.00						
	Direct	Direct						
January February March April May June July August September October November December	0.155 0.148 0.125 0.099 0.064 0.000 0.000 0.000 0.001 0.087 0.117 0.114	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.952 1.876 1.628 1.347 0.969 0.278 0.278 0.278 0.278 0.937 1.217 1.541 1.833					
Sum:	1	0	14.133					
Domestic h	ot water (D	HW):						
An	nual 5.	000 SPI	3.00					
[MWh] Heat Heat: 16.2 (5.4)	pump 6 (1/3 + 1 ()	around 6.2x2/3 10.8)	Building = 16.2					
DHW: 5x17 (1.66	3 + 5 67) (1	ix2/3 3.3333)	= 5					
Cool: 0x17 (0)	3 + C ()x4/3 D)	= 0					
Heat:	Heat pump 7.0667 == Grour	Building > _ ==> 21.2 nd 14.133	2					
Cool:	Heat pump 0 == Grour	Building > _ <== 0 nd 0	1					
Heat extracte	d from groun	d: 10.8+3.3333	-0=14.133					
	Ĩ.	<u>C</u> lose	🔁 <u>G</u> raph					

Figure 3.15: Input for base load.

The input field is divided in three columns, "Heat", "Cool" and "Ground". In the first line under "Heat" the annual heat load in MWh is typed, for Linden 29.03 MWh (winter 1993/94). Under "Cool" the

annual cooling load is stated, which was in Linden 1.89 MWh in summer 1994. The next line accommodates the seasonal performance factor (SPF); an annual average is required. For the Linden example it was SPF = 2.12 in winter 1993/94. In the cooling mode in Linden no heat pump is operated; this so-called "direct cooling" can be simulated with a large SPF (99999) is shown here).

The factors in the following lines give the part of the heating and cooling load in each month, resp. 0.155 in January means 15.5 % of the heating load occurs in January. For the Linden example, the heating values are kept unchanged, while for cooling mode values in the months June-August are given. The last column displays the resulting heat extracted from or rejected to the earth for each month, as calculated using annual load, SPF, and monthly factors. Negative values mean heat flow into the earth. This column cannot be accessed directly. The Linden example now looks like shown below:

Base load			×
Base load (without DH	₩):	:
 Annual Monthly 	energy and energy val	monthly prol ues	lle
	onorgy rai		
[MWh]	Heat	Cool	Ground
Annual	29.030	1.890	Update
SPF	2.12	99999.00	
	Direct	Direct	
January February March April May June July August September October November December	0.155 0.148 0.125 0.099 0.064 0.000 0.000 0.000 0.000 0.001 0.087 0.117 0.144	0.000 0.000 0.000 0.250 0.500 0.250 0.250 0.250 0.000 0.000 0.000 0.000	2.377 2.270 1.917 1.518 0.982 -0.473 -0.945 -0.473 0.936 1.334 1.794 2.208
Sum:	1	1	13.447
-Domestic h An	nual 0.0	900 SPF	3.00
[MWh] Heat Heat: 29.03 (13.6	pump G 3x1/2.12 + 2 93) (1	i <mark>round</mark> 9.03x1.12/2.12 15.337)	Building 2 = 29.03
DHW: 0x17 (0)	3 + 0 ((x2/3))	= 0
Cool: 1.89: (0)	(0 + -1 (-	l.89x1 1.89)	= -1.89
Heat	Heat pump 13.693 ==) Grour	Building > _ ==> 29.0 nd 15.337	3
Cool:	Heat pump 0 ==) Grour	Building ≻	
Heat extracte	d from ground	± 15.337+0-1.8	9=13.447
		<u>C</u> lose	🔁 <u>G</u> raph

Figure 3.16: Data for our example.

When no more changes are desired, the sub-menu "**Base Load**" can be closed by either clicking on "**Close**" or on the "5" in the upper right corner of the window.

4.5 DHW 4 Heat base load Cool base Load ~ 3.5 ~ Total base Load Earth base Load 3 -2.5 2 1.5 1 0.5 0 -0.5 FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN JAN

The method for monthly heating- and cooling-loads works very much alike, only the line for annual loads is not accessible and the monthly loads are typed in directly instead of the monthly load factors.

Figure 3.17: Menu button "Graph" draws a chart.

3.6 Input of Peak Load Data

Figure 3.18 shows the input for peak heat and cooling power. For each month the maximum heat load (which normally is the maximum heat pump heating output) and the continuous duration of this load can be given.

Peak heat and cool power 🛛 🔀							
	<u>Peak hea</u>	t	Peak cool				
	Power	Duration		Power	Duration		
	[kW]	[h]		[kW]	[h]		
January	0.000	0.000		0.000	0.000		
February	0.000	0.000		0.000	0.000		
March	0.000	0.000		0.000	0.000		
April	0.000	0.000		0.000	0.000		
May	0.000	0.000		0.000	0.000		
June	0.000	0.000		0.000	0.000		
July	0.000	0.000		0.000	0.000		
August	0.000	0.000		0.000	0.000		
September	0.000	0.000		0.000	0.000		
October	0.000	0.000		0.000	0.000		
November	0.000	0.000		0.000	0.000		
December	0.000	0.000		0.000	0.000		
<u>Close</u> Graph							

Figure 3.18: Input for peak heat and cooling power.

Peak loads are used to estimate the maximum possible temperature variations. The heat extraction or - rejection according to the peak load is added to the base load at the end of each month, and the resulting fluid temperatures are calculated. This values are stored separately in the output file and show the minimum respectively maximum temperatures which can occur.

Peak heat loads are given in kW. The program automatically calculates with the seasonal performance factor (SPF) given in the base load sub-menu. In cases where peak heat load may result in the same average heat extraction rate as given in base load, the curves will coincide. For the calculation it is supposed, that the *energy content* of the short peak load is negligible (i.e. included in the base load) and does not influence the long-term behaviour.

In the Linden example the heat pump has a maximum heating output of 17 kW. In winter 24 hours of continuous maximum heating output are possible, the corresponding values are typed in the fields and are shown in the figure below:

In summer more than 10 hours maximum cooling load are not to be expected (early in the morning and during night normally no cooling is required). For the Linden example 6 kW maximum cooling load are given, which are supplied directly from the ground (SPF = 10000 is still valid from the base load submenu). The values are also shown in the figure below.

Figure 3.19: Data for our example.

The base load tells the long-term story, i.e. the development of the ground temperature and thus fluid temperature in response to the heat extraction and injection. This is where real loads of heat are shifted in and out of the ground. The peak load is there to check if the maximum required load over a continuous operation time of some hours can be extracted or injected under the general long-term development. As we do monthly calculations, no temperatures are given for days other than the end of the months (or the beginning of the next, which is the same). Putting the peak load to the end of the month usually means a worst-case scenario. The energy amount of the peak is not added to the monthly development, not to increase the base load by mistake.

The most critical loads for design are the

1. energy loads for heating and cooling. These loads determine the energy balance for the ground and the ground temperature evolution over time.

2. peak heating power in the winter - most critical time is usually January-March. This gives the minimum fluid temperature

3. peak cooling power in the summer - most critical time is usually August (-September). This gives the maximum fluid temperature

The DHW (District Heat Water) energy load is important for the whole year, but DHW peak power is not important for the maximum fluid temperature in the summer

See also questions/answers at http://www.buildingphysics.com/index-filer/Page1440.htm

3.7 Simulation Period

Figure 3.20 shows the menu for simulation period. In "**Simulation Period**" the number of years the simulation should comprise is stated (10 years in the sample case). Also the starting month is important, in particular in plants with heating and cooling. Those plants can have first a phase of heating the ground or first an extraction phase. The Linden plant was operational in February (very uncommon), the 2:nd month of the year.

Figure 3.20: Input for simulation period.

4. Calculation of mean fluid temperature

The calculations can be done in the pull-down menu "**Solve**", see Figure 4.1. Two alternatives are offered in the "**Solve**" menu:

• the calculation of the mean temperature of the heat carrier fluid for a given plant (layout as given in the project data file),

• the calculation of the required borehole length to keep the fluid temperature within given limits for that plant.

o e	arth E	ner <mark>gy</mark> Des	igner	UNTIT	LED.DA	Γ L	icense for	TES	
Eile	Input	⊆ost data	<u>S</u> olve	<u>O</u> utput	S <u>e</u> ttings	<u>H</u> elp			
F	arth	Energ	Solv	'e mean fl	uid temper	atures		F9	
V	ersior	13.05	Solv	e require	d borehole	length		F10	
70	28. cor	figuratio	Solv	e require	d borehole	length	- Optimizatio	n F11	
	50 001	inguratio	Fluid	d tempera	ture const	raints		F12	
									_

Figure 4.1: The solve menu.

In the Linden example, now a warning concerning the Reynolds number appears, see Figure 4.2.

Figure 4.2: Warning for non-turbulent flow.

The flow within the heat exchanger pipes is not turbulent, exhibiting a Reynolds number of 1184. Thus, the heat transfer from pipe wall to fluid is poor. A Reynolds number of >2300 is desirable. The calculation can be continued anyway, by clicking on "Yes", and the warning vanishes. After few seconds the calculation is completed. In cases where fluid temperatures become lower than the fluid's freezing point, a warning is given.

5. Output of results

5.1 Introduction

After completion of the calculation, a window showing the input data and the results is displayed, see Figure 5.1.

```
🖲 Design data from last simulation (MANUAL_E_NY.OUT)
<u>File Edit mode Font</u>
 EED Version 3.05, license for TEST VERSION
   Input file: MANUAL E.DAT
   This output file:MANUAL E.OUT Date: 5/26/2008 Time: 1:17:01 PM
 MEMORY NOTES FOR PROJECT
 -Example for Manual
 -EED Version 2.0
 *** CAUTION! SOLUTION HAS WARNINGS! ***
 QUICK FACTS
   Cost
   Number of boreholes
                                              4
   Borehole depth
                                              50.00 m
   Total borehole length
                                              200.00 m
                  DESIGN
                               DATA
                  _____
 GROUND
   Ground thermal conductivity
                                              1.500 W/(m·K)
                                              1.800 MJ/(m<sup>3</sup>·K)
   Ground heat capacity
                                              9.00 °C
   Ground surface temperature
   Geothermal heat flux
                                              0.0650 W/m²
 BOREHOLE
                                              3 ("4 : 1 x 4, line")
   Configuration:
   Borehole depth
                                              50.00 m
   Borehole spacing
                                              4.00 m
   Borehole installation
                                              DOUBLE-U
   Borehole diameter
                                              130.00 mm
   U-pipe diameter
                                              25.000 mm
   U-pipe thickness
                                              2.300 mm
   U-pipe thermal conductivity
                                              0.420 W/ (m·K)
   U-pipe shank spacing
                                              70.000 mm
   Filling thermal conductivity
                                              0.600 W/(m·K)
                                                                    >
```

Figure 5.1: Input data and calculated results (menu item Output/View design data).

With the "File" command of the new window, the output file can be printed or saved under another name. Editing and changing fonts and format is also possible. The output file is an ASCII-file and thus can be loaded into most text editors to be further edited. The complete file Manual_e.out is printed in Appendix A.

In the "**Output**" menu of EED also graphs of the temperature development can be displayed. The temperature over the months of the last year of simulation can be seen with "Plot Fluid Temperatures" (see Figure 5.2), and the evolution of the highest and lowest temperatures for each year of the simulation period can be seen with "Plot Min-Max Temperatures" (see Figure 5.3).

Figure 5.2: Fluid temperature chart.

Figure 5.3: Minimum and maximum temperatures.

The graphs "Fluid temperature chart" and "Minimum and maximum temperatures" can be kept open on the screen, and they will be updated with every new "Solve"-action. When a new data file in menu "File" is opened, the windows with the graphs are closed automatically.

Each of the two graphic windows has the pull-down menus "File" and "Options". With the "File" menu for graphs, see Figure 5.4, the following operations can be made:

Figure 5.4 The file menu.

With "Copy to clipboard...", the figure can be transferred to other programs under Windows (e.g. MS-Word). The command "Save to *.WMF..." allows to save the graph as a Windows-Metafile, that can later be imported into other programs. "Print preview..." allows to check the printer output of the

graph, to change and adjust it, and to send it to a printer; with "Print setup", the printer can be selected and configured.

The pull-down menu "Options", see Figure 5.5, allows to change the style and to edit the graph:

Figure 5.5: The options menu

To allow using different graphic packages, two data output files are created after each "**Solve**" operation. These files, called "tfluid.out" and "tfmin.out", contain the data points for the graphs in ASCII-format. An example is given in Appendix C.

The command "Edit chart" allows a more sophisticated editing of the figure (changing colours, adjusting axes and scales, editing the legend, etc.).

5.2 Changing chart properties

5.2.1 Introduction

The properties of a chart may be changed by the chart editor (**Options/Edit chart**), see Figure 5.6.

3 Editing Chart1	?×
Chart Series Data Tools Export Print	
Series General Axis Titles Legend Panel Paging Walls 3D	
Title	
Style Position Format Text Gradient Shadow	
▼ Visible ▼ Adjust Frame Alignment: Center ▼	
Iext:	
A new title for this chart	~
	>
Help Close	,

Figure 5.6: Chart settings may be changed in menu item **Options/Edit chart**.

5.2.2 Chart and series properties

There are two principal sections to the Chart editor, Chart parameters and the Series parameters, which are separated as two tabs of the Chart Editor. To get help on any topic in the Chart Editor, select the help button (question mark) at the top right hand side of the Editor window and drag it onto the Topic in question.

Chart pages

You may define overall chart display parameters as follows:

Series page - You can change a series type to line, bar, area, point, etc. Select the series type of choice from the gallery.

General Page - Chart rectangle dimensions, margins, zoom and scroll, print preview and export

Axis Page - All axes definitions. Some parameters depend upon the series associated with the axis.

Titles Page - Title and Footer

Legend Page - Legend display. Formatted displays work in conjunction with the chart series. See also the 'General' page of the Series.

Panel Page - Chart Panel display properties. Colours, bevels, back images, colour gradient and border.

Paging Page - Definition of number of points per chart page

Walls Page - Left, bottom and back wall size and colour definitions

3D – 3D perspective options.

Series Pages

The series pages contain parameters dependant on the series type concerned. The most important options are as follows:

- Format Page Contains Series type specific parameters
- **Point** Visible points, margins
- General Page Series value format, axis association

Marks Page - Series mark format, text, frame and back colour and positioning

6. Calculation of required borehole length for given fluid temperature constraints

In the chosen example of Linden the plant is undersized, as also was detected in the monitoring data. Mean base load temperatures below 0 °C over several weeks should be avoided, and temperatures should preferably not drop below -5 °C in peak heat load conditions. With the second alternative in menu "**Solve**", see Figure 6.1, an easy way to calculate the required borehole length to fulfil this conditions is offered:

Earth Energy Des	igner UNTITLED.DAT License fo	or TES 🔳 🗖 🔀
File Input Cost-data	Solve Output Settings Help	
Earth Energ	Solve mean fluid temperatures	F9
Version 3.05	Solve required borehole length	F10
798 configuratio	Solve required borehole length - Optimizal	tion F11
r oo ooningaradie	Fluid temperature constraints	F12
	And	

Figure 6.1: Item solve required borehole length.

To calculate the required borehole length for a given plant under certain fluid temperature constraints, the sub-menu "Fluid temperature constraints" in the "**Solve**"-menu is opened, see Figure 6.2. The desired maximum and minimum fluid temperatures not be exceeded can be typed in. By activating "4" for "Include peak loads" the peak load temperature will be the criterion, with the field deactivated the base load temperature.

Fluid temperature constraints		×
Minimum mean fluid temperature:	-5.00	°C
Maximum mean fluid temperature:	15.00	°C
🔽 Include peak loads		

Fluid temperature constraints		×
Minimum mean fluid temperature:	-5.00	°C
Maximum mean fluid temperature:	18.00	°C
🔽 Include peak loads		

Figure 6.2: Input for fluid temperature constraints changed ("manual_x.dat").

After stating the fluid temperature constraints (-5.0 °C and 18.0 °C, respectively, for the Linden example) the sub-menu can be closed by either clicking on "**Close**" or on the "5" in the upper right corner of the window. To keep the earlier calculations, a new project data file called "manual_x.dat" is created in the menu "**File**" with the command "Save as...". Automatically the output will be written to a new output file "manual_x.out".

The calculation, using the borehole configuration as stated in the sub-menu "**Borehole and Heat Exchanger**" in the "**Input**"-Menu, is started by clicking on "Solve required borehole length". The borehole length is increased, which can be seen in the output window. The graphics (see below) now show a very satisfying temperature development.

Figure 6.3: Fluid temperature chart.

Figure 6.4: Minimum and maximum temperatures.

The content of the output file "manual_x.out" for the optimized Linden example is listed in 0. It is obvious, that the borehole depth has to be increased by ca. 65 % to achieve an energetically optimum layout. Economic consideration can result in not following this design in a particular case; but in any case the layout has to guarantee the plant will work at least without thermal problems in the ground.

In the graph "Minimum and maximum temperatures" the temperature curves will approach an almost horizontal line after some years. The time to attain such steady-state thermal conditions increases with the number of boreholes and the borehole depth. For sites without groundwater flow the temperature development over simulation period has to be observed thoroughly. A totally horizontal line theoretically will only be found in plants with balanced heating-/cooling load, but an asymptotic closing in to a not too low temperature level is sufficient (not to high level in case of cooling).

The influence of groundwater flow through the borehole field is not accounted for in the present version of EED. The effect of the groundwater flow is to move the thermal disturbance (caused by the injection or extraction of heat) away from the boreholes. This effect improves the performance of systems designed for dissipation of heat and cold into the ground. The improvement depends on the magnitude of the groundwater flow (given in terms of the so-called "Darcy flow") and on how much of the total borehole length penetrates layers with groundwater flow. For systems intended for storage of heat and/or cold, the groundwater flow will increase heat losses and thereby reduce the efficiency of the store.

7. Optimization of borehole length and cost

The optimization option gives the minimum total borehole length (or cost) for a given set of parameters (range of configuration numbers, land area, borehole spacing and depth, and number of boreholes), see Figure 7.1. Each configuration will be analysed for different values of the borehole spacing. If a configuration fits within the land area (length x width), a required borehole length calculation will be made and the result will be listed.

If option **Automatic grid step** is checked the borehole spacing value will start with 5 m and increase by 5 (5, 10, 15 m and so on) until the configuration does not fit within the specified land area. When all possible configurations have been analysed, the ten best configurations (i.e. with the minimum total borehole length or cost) will be marked "*Chosen for detailed analysis*". A new detailed analysis will then be started, this time with a borehole spacing grid step of 1 m. The time for the whole optimization might be a few seconds for a smaller systems (small load and small land area) up to several minutes for larger systems (large loads and large land areas). The grid step may be chosen at will if option **Automatic grid step** is unchecked.

Note that the fitting of each configuration will be parallel to the length/width-axes (e.g. a line of 5 boreholes will not be analysed diagonally across the land area, instead the maximum of the width/length will be used to obtain the maximum spacing).

Also note that results will not be listed if there is an alert (warning) on the solution, unless "Also list cases with warnings" is checked.

Figure 7.1 shows results for "manual_x.dat" (the flow rate has here been increased from 0.27 l/s to 0.6 l/s to assure turbulent flow). The best solution found is two boreholes in a line with a spacing of 6 m. This gives a borehole depth of 131 m, and a total borehole length of 262 m.

💽 Optir	nization	MANU	AL_OPT.DA	Г								
Eile												
Config			0 .	797	Opti	mize	🔽 Automa	tic grid step		Step: 2 m Sort:	ength C I	Cost
Max land	l area		30 x	20 m²		Config	4/4 "1×5	, line''				
Borehole	snacing		5.	100 m		Spacing	7 m					
			50	200 m	927 cases trier		🔽 Round	off values		Best configs: 1 21 2 233 22 3 1	D2 23 30 4	
Borehole	depth		·	300 111	Solutions found	t: 109	Also list	cases with wa	minas			
Max no b	oreholes		2000		Analys started	1:50:52 PM, stoppe	ed 1:50:58 PM time	: 5s Double	click on row	for details		
Config	No bh	Туре		Spacing [m]	Depth [m]	Total length [m]	Land area [m²]	Length [m]	Width [m]	Comments	Cost [EUR]	^
1	2	1 x 2, line	э	6	131	262	6	6	1	Detailed analysis	0	
1	2	1 x 2, line	e	5	132	264	5	5	1	Chosen for detailed analysis	0	
1	2	1 x 2, line	8	7	133	266	7	7	1	Detailed analysis	0	
21	3	2 x 2, L-c	configuration	20	89	268	400	20	20	Chosen for detailed analysis	0	
21	3	2 x 2, L-c	configuration	18	89	268	324	18	18	Detailed analysis	0	
21	3	2 x 2, L-c	configuration	19	89	268	361	19	19	Detailed analysis	0	
2	3	1 x 3, line		15	90	269	30	30	1	Chosen for detailed analysis	0	
21	3	2 x 2, L-c	configuration	17	90	269	289	17	17	Detailed analysis	0	
21	3	2 x 2, L-c	configuration	15	90	270	225	15	15	Chosen for detailed analysis	0	
21	3	2 x 2, L-c	configuration	16	90	270	256	16	16	Detailed analysis	0	
2	3	1 x 3, line		14	90	270	28	28	1	Detailed analysis	0	
21	3	2 x 2, L-c	configuration	14	90	271	196	14	14	Detailed analysis	0	
2	3	1 x 3, line	8	13	90	2/1	26	26	1	Detailed analysis	U	
21	3	2 x 2, L-c	configuration	13	91	272	169	13	13	Detailed analysis	U	
2	3	1 x 3, line	9	12	91	272	24	24	1	Detailed analysis	U	
1	2	1 x 2, line	8	8	137	2/3	8	8	1	Detailed analysis	U	
21	3	2 x 2, L-c	configuration	12	91	273	144	12	12	Detailed analysis	U	
2	3	1 x 3, line	•	11	91	273	22	22	1	Detailed analysis	U	
2	3	1 x 3, line	8	10	91	274	20	20	1	Chosen for detailed analysis	0	
233	4	2 x 2, rec	stangle	20	69	274	400	20	20	Chosen for detailed analysis	U	
21	3	2 x 2, L-c	configuration	11	91	274	121	11	11	Detailed analysis	0	
21	3	2 x 2, L-c	configuration	10	92	275	100	10	10	Chosen for detailed analysis	0	
2	3	1 x 3, line	8	9	92	2/5	18	18	1	Detailed analysis	U	
233	4	2 x 2, rec	stangle	19	69	275	361	19	19	Detailed analysis	U	
233	4	2 x 2, rec	tangle	18	69	276	324	18	18	Detailed analysis	0	
22	4	2 x 3, L-c	configuration	15	69	2//	450	30	15	Chosen for detailed analysis	U	
21	3	2 x 2, L-c	configuration	9	92	277	81	9	9	Detailed analysis	0	
2	3	1 x 3, line		8	92	277	16	16	1	Detailed analysis	0	
233	4	2 x 2, rec	tangle	17	69	277	289	17	17	Detailed analysis	U	
233	4	2 x 2, rec	tangle	16	69	278	256	16	16	Detailed analysis	U	
22	4	2 x 3, L-c	configuration	14	69	278	392	28	14	Detailed analysis	U	
233	4	2 x 2, rec	tangle	15	/0	279	225	15	15	Chosen for detailed analysis	U	
1	2	1 x 2, line		9	140	279	9	9	1	Detailed analysis	U	
21	3	2 x 2, L-c	configuration	8	93	279	64	8	8	Detailed analysis	U	
2	3	1 x 3, line	8	1	93	279	14	14	1	Detailed analysis	U	~
177	A	2031-0	contrauration	12	70	-279			12	Listad applicas	1.11	

Figure 7.1: The optimization list can be sorted for any column by clicking on the header. Double click on the row for full details.

8. Cost data

There is an option to specify simple cost data for the analysis, see Figure 8.1. If cost data is given, the calculated cost will be shown in the output result file and in the optimization list. The parameters are as follows:

- Fix initial cost (fix cost for the whole system)
- Fix cost per borehole
- Cost per drilled unit length
- Fix cost per borehole for soil drilling
- Cost per drilled unit length in the soil (depth should be given)
- Cost per length for the ditches (the ditch length is assumed to be equal to the borehole spacing times (number of boreholes-1)

Figure 8.1: Cost data.

9. Change of units

English units are now supported. Input values can easily be converted back and forth between SI and English units, see Figure 9.1. There are two options: convert current input values and change units, or just change units (without conversion of current input).

Unit converter	Unit converter 🛛 🔀
Convert from SI to English units:	Convert from English to SI units:
Convert input values and change units	Convert input values and change units
Change units only	Change units only
Cancel	Cancel

Figure 9.1: Conversion of input to new units.

Figure 9.2 shows an example with English input. Figure 9.3 shows an output example with English units.

Borehole and heat exchanger		
Borehole		
Туре	Double-U	•
Config.	3	?
3 (''4 : 1 x 4, line'')	164.0	
Depth	131	rt
Spacing	5 118	nt.
Diameter	0.0246	inch
Contact res. outer pipe/filling	0.0346	(h·ft·*F)/Btu
Vol. flow rate Q:		200
(for all boreholes (• per borehole		^{1.280} US gal/min
Series factor (1=parallell): 1	Qbh=Q=4.28 U	IS gal/min
U-pipe		
Outer diameter	0.984	inch
Wall thickness	0.091	了 inch
Thermal conductivity	0.243	Btu/(h·ft·°F)
Shank apaging	2.756	inch
Shank spacing	0.347	
r illing (hermal conductivity	1	Btu/(n/tc/F)
👖 <u>C</u> lose		

Figure 9.2: An input example with English units.

Note: The flow rate is given in US gallons (not Imperial gallons) which is 3.7854118 liter.

Figure 9.3: An Output example with English units.

Note that the default data in the pick list windows are given in SI units, see Figure 9.4. If English units are preferred, you can either convert the SI data to English units, or edit the text files and give data in English units. It is recommended that you check input and output results.

Thermal conductivit	у 🔀	Volumetric heat capacity 🛛 🛛 🔀
Convert values:		Convert values:
⊛No ⊂ SI	=> ENG 🔿 ENG => SI	• No • SI => ENG • ENG => SI
Air at 0 - 20 C	~	Air at 0 C - 20 C 🔨
recommended	0.02 📃	recommended 0.0012 🥮
minimum	0.02	Amphibolite
maximum	0.03	recommended 2.6
Amphibolite		Andesite
recommended	2.9	recommended 2.4
minimum	2.14	Anhydrite
maximum	3.55	recommended 2.0
Andesite		Aplite
recommended	2.2	recommended 2.4
minimum	1.73 🤍	Arkose 🗸
	n nn 🔛	· · · · · · · · · · · · · · · · ·

Ground surface tempe	rature	×	Geothermal heat flux	×
⊂Convert values:	ENG 🔿 ENG	G => SI	Convert values:	ENG 🔿 ENG => SI
GERMANY		~	GERMANY	~
Berlin	8.7		Berlin	0.080
Bremen	9.0		Bremen	0.070 📃
Dresden	9.0		Dresden	0.060 🧮
Dusseldorf	11.0		Dusseldorf	0.055
Frankfurt/M	8.9		Frankfurt/M	0.070
Giessen	9.0		Giessen	0.065
Hamburg	8.8		Hamburg	0.060
Karlsruhe	10.9		Karlsruhe	0.095
Köln	11.0		Köln	0.055
Leipzig	8.5	~	Leipzig	0.080 🧔
16	0.0	<u> </u>	161	n nnn 🔛

Diameter 🛛 🕅	Inner pipe 🛛 🕅
Convert values:	Convert values:
	● No
73.0 mm 2 7/8" 🔥	PE DN25 PN6
80 mm 📄	d=25 mm t=2.0 mm 1=0.42 📄
88.9 mm 3 1/2"	PE DN32 PN6
100 mm	d=32 mm t=2.0 mm 1=0.42
101.6 mm 4"	PE DN40 PN6
110 mm	d=40 mm t=2.3 mm 1=0.42
114.3 mm 4 1/2"	PE DN50 PN6
120 mm	d=50 mm t=2.9 mm 1=0.42
120.7 mm 4 3/4"	PE DN20 PN10
127 mm 5 "	d=20 mm t=2.0 mm 1=0.42
130 mm 🔍	PE DN25 PN10 🔍
100 T E 1 (2) 🔛	

Heat carrier fluid						X
Convert values:			~	ENG - OL		
(• No	() SI => ENG		0	ENG => SI		
Water						
0 C	0.562	4217.0	999.8	0.001791	0.0	
5 C	0.572	4202.0	1000.0	0.001520	0.0	
10 C	0.582	4192.0	999.8	0.001308	0.0	
15 C	0.591	4186.0	999.2	0.001139	0.0	
20 C	0.600	4182.0	998.3	0.001003	0.0	
25.0	0 608	4180 0	997 2	0 000891	0 0	Y

Figure 9.4: Data in the pick lists are provided in SI units.

10. Multilingual option

10.1 Introduction

Figure 10.1 shows the language option (menu item **Settings/language**). A click in the list will change the language for the menu, input data, and output results. The most current language files are listed at

http://www.buildingphysics.com/EED_languages.htm

Set Language
English German Swedish Dutch French Italian Hungarian
Edit/add languages
<u> </u>

Figure 10.1: Dialog for changing language (list is defined in file "Lang.txt").

10.2 How to create files for a new language

New language files can easily be created and edited, see Figure 10.2. There are three files for the menu text, the input dialogue text, and the output text:

- Menu text: Lang_menu_***.txt
- Input text: Lang_in_***.txt
- Output text: Lang_out_***.txt

The string "***" should be replaced by the ISO 639-2 Code, see e.g.:

http://www.loc.gov/standards/iso639-2/php/code_list.php

E.g. the Swedish files should be named

- Lang_menu_swe.txt
- Lang_in_swe.txt
- Lang_out_swe.txt

If you create new language files please consider to email these to info@blocon.se and we will make these available to others. The files must be in "Ansi"-format (Windows-1252), see http://en.wikipedia.org/wiki/Windows-1252

Some languages might have most characters supported, but not all. An example is Hungarian (which has ű and ő that is not part of Windows-1252). It is however possible to replace these with other characters and still obtain readable text.

-

Help Use detail initial language [English] Imput text Fie LANG_MEINL_ENG.TXT Change Edit Clear Create Upput text Fie LANG_OUT_ENG.TXT Change Edit Clear Create Upput text Fie LANG_OUT_ENG.TXT Change Edit Clear Create Upput text French Set latest language files to blocon French Set latest language Set latest language Set of the disconsector Set file formone Set set of the dis		Language		
File: LANG_OUT_ENG.TXT Change Edit Clear Create Chat edito: English Danish Danish Denoish French German Huncarian English French German Huncarian English French German Huncarian English French German Huncarian File (loce 2 2 2 2 2 2 2 2 2 2 2 2 2		Language setting: C Use default initia Use language file Menu text: File: LANG_MENU_E Change Ed Input text: File: LANG_IN_ENG Change Ed Output text:	Help I language (English) es below ENG.TXT fit Clear Create .TXT fit Clear Create	
Get latest lanquage files [Buildingphysics.com] Email files to blocon Imail files to blocon Imput Cround properties Borehole and heat exchanger Borehole and heat exchanger		File: LANG_OUT_EN Change Ed Chart editor: English Danish Dutch English French German Hunoarian	IG.TXT iit Clear Create Set (English)	
Datei New Neu Open Speichern unter Save Ammerkungen Save As Bingabedaten Input Untergrundeigenschaften Ground properties Bohrungen und Brdwärmesonden Borehole and heat exchanger Thermischer Bohrlochwiderstand Borehole thermal resistance Wärmeträgerflüssigkeit Heat carrier fluid Grundlast Base load Spitzenlast Peak load Berechnen der mittleren Fluidtemperaturen Solve mean fluid temperatures Berechnen der mittleren Fluidtemperaturen Solve mean fluid temperatures Solve mean fluid temperatures Solve mean fluid temperatures Solve mean fluid temperatures View design data	Edit left hand side: LANG_MEN	<u>Get latest language</u> Email J_GER.TXT (see ref	files (Buildingphysics.com) files to blocon Close erence at right hand side	LANG_MENU_ENG.TXT)
bateiNeuOpenSpeichernSaveSpeichern unterSaveAnmerkungenMemory notesEndeExitBingabedatenInputUntergrundeigenschaftenBorehole and heat exchangerBohrungen und ErdwärmesondenBorehole and heat exchangerThermischer BohrlochwiderstandBorehole thermal resistanceWärmeträgerflüssigkeitHeat carrier fluidGround JastSimulation periodBate der SimulationSolveBerechnen der mittleren FluidtemperaturenSolveBerechnen der behötigten BohrlochtiefeSolve mean fluid temperaturesSolve required borehole lengthFluid temperaturesSolve mean fluid temperaturesSolve required borehole lengthFrigebnisausgabeAnsehen der DatentabelleVView design data	ile Font <update></update>			
	Neu Neu Öffnen Speichern Speichern unter Ammerkungen Ende Eingabedaten Untergrundeigenschaften Bohrungen und Erdwärmesonden Thermischer Bohrlochwidersta Wärmeträgerflüssigkeit Grundlast Spitzenlast Dauer der Simulation Wärmepunge Berechnen der mittleren Flui Berechnen der mittleren Flui Berechnen der benötigten Boh Gewünschte Temperaturgrenzen Ergebnisausgabe Ansehen der Datentabelle	nd dtemperaturen rlochtiefe des Fluids	New Open Save Save As Memory notes Exit Input Ground properties Borehole and heat ex Borehole thermal res Heat carrier fluid Base load Peak load Simulation period Heat pump Solve Solve mean fluid tem Solve required boreh Fluid temperature co Output View design data	changer istance peratures ple length hstraints
		<u> </u>		

Figure 10.2: Creating/changing language files.

11. Update EED v3.2

11.1 Introduction

EED v3.2 is an important upgrade that is better adapted to Windows Vista, Windows 7 and Windows 8. The new features are described below.

11.2 New license management system

The license management system is improved with easier activation/deactivation using a new license server.

Important: If you have an old license key for v3.0 or v3.1 you need to convert it to a new product key for v3.2 before activation. This can be made in the "About"-box in EED v3.2, or by using the link at http://www.buildingphysics.com/index-filer/Page1139.htm

11.3 Installation to new folders

In Windows Vista, Windows 7 and Windows 8 the Program Files folder and the Program Files (x86) folder (and all subfolders beneath) are read-only folders for standard users (users that run programs with standard privileges). This means it is not possible for them to create files or update files in this location of the hard disk. The folders are write-protected.

Therefore, default project files, languages files and other input files required to run EED v3.2 will now be installed to

"...My Documents\Blocon\EED 3"

The exe-file (and necessary license files) is now installed to folder:

```
"C:\Program Files (x86)\BLOCON\EED_v3"
```

Note that EED 3.2 will have a new name on the start-menu: "**EED 3.2 Multi-lingual**" (not to be confused with the older versions 3.0-3.16 that had the name " EED 3 Multi-lingual".

11.4 Export to Excel improved

The export from the Design Data window (menu item Output/View Design data) to Excel has been improved with better formatting.

Note that a .csv file is created and opened by Excel. On American Windows versions, the comma is set as default for the "List Separator", which is ok for CSV files. On European Windows versions this character is reserved as the Decimal Symbol and the "List Separator" is set by default to the semicolon ";".

11.5 Updated language files

The setup file for v 3.2 will install the latest language files. For more info, see http://www.buildingphysics.com/index-filer/Page1139.htm

12. Literature

Claesson, J. & Eskilson, P. (1985): Thermal Analysis of Heat Extraction Boreholes. - Proc. 3rd Int. Conf. Energy Storage ENERSTOCK 85, pp. 222-227, PWC, Ottawa

Claesson, J. & Eskilson, P. (1986): Conductive Heat extraction by a deep borehole, analytical studies. - University of Lund, Lund

Claesson, J. (1987): Computer Models for and analysis of thermal processes in the ground. - Proc. WS on GSHP Albany, Rep. HPC-WR-2, pp. 201-204, Karlsruhe

Claesson, J. & Eskilson, P. (1988): Conductive Heat Extraction to a deep Borehole, Thermal Analysis and Dimensioning Rules. - Energy 13/6, pp. 509-527, Oxford

Claesson, J. & Eskilson, P. (1988): PC Design Model for Heat Extraction Boreholes. - Proc. 4th int. Conf. Energy Storage JIGASTOCK 88, pp. 135-137, Paris.

Claesson, J. & Hellström, G. (1988): Theoretical and Experimental Study of the Local Heat Transfer in a Borehole with Heat Exchanger Pipes. - Proc. 4th int. Conf. Energy Storage JIGASTOCK 88, pp. 139-143, Paris

Claesson, J., Eskilson, P. & Hellström, G. (1990): PC Design Model for Heat Extraction Boreholes. - Proc. 3rd WS on SAHPGCS Göteborg, CIT₁ 1990:3, pp. 99-102, Göteborg

Claesson, J. (1991): PC Design Model for Thermally Interacting Deep Ground Heat Exchangers. - Proc. WS on GSHP Montreal, HPC-WR-8, pp. 95-104, Sittard

Eskilson, P. (1986a): Superposition Borehole Model. - University of Lund, Lund

Eskilson, P. (1986b): Temperature Response Function g for 38 Borehole Configurations. - University of Lund, Lund

Eskilson, P. (1986c): Numerical analysis of radial and vertical mesh division for a single heat extraction borehole. - University of Lund, Lund

Eskilson, P. & Claesson, J. (1988): Simulation Model for thermally interacting heat extraction boreholes. - Numerical Heat Transfer, 13, pp. 149-165

Hellström, G. (1991): PC-Modelle zur Erdsondenauslegung. - IZW Bericht 3/91, pp. 229-238, Karlsruhe

Hellström, G. & Sanner, B. (1994): Software for dimensioning of deep boreholes for heat extraction. - Proc. CALORSTOCK 94, pp. 195-202, Espoo/Helsinki

Hellström, G. & Sanner, B. (1994): PC-Programm zur Auslegung von Erdwärmesonden. - IZW-Bericht 1/94, pp. 341-350, Karlsruhe

Hellström, G. Sanner, B., Klugescheid, M., Gonka, T. & Mårtensson, S. (1997): Experiences with the borehole heat exchanger software EED. - Proc. MEGASTOCK 97, pp. 247-252, Sapporo

Sanner B., Klugescheid, M. & Knoblich, K. (1996): Numerical Modelling of Conductive and Convective Heat Transport in the Ground for UTES, with example. - Proc. Eurotherm Seminar 49, pp. 137-146, Eindhoven

Sanner, B. & Hellström, G. (1996): "Earth Energy Designer", eine Software zur Berechnung von Erdwärmesondenanlagen. - Tagungsband 4. Geothermische Fachtagung Konstanz, pp. 326-333, GtV, Neubrandenburg

Appendix A. Output data file "Manual_e.out"

"Manual_e.out"

EED Version 3.05, license for TEST VERSION Input file:C:\Documents and Settings\Thomas\My Documents\RAD Studio\Projects\EED_3\Projects\MANUAL_E.DAT This output file:MANUAL_E.OUT Date: 5/26/2008 Time: 1:39:14 PM MEMORY NOTES FOR PROJECT -Example for Manual -EED Version 3.0 **** CAUTION! SOLUTION HAS WARNINGS! *** QUICK FACTS Cost -Number of boreholes 4

Borehole depth		50.00	m
Total borehole	length	200.00) m

DESIGN DATA _____

GROUND

Ground thermal conductivity	1.500 ₩/(m·K)
Ground heat capacity	1.800 MJ/(m³·K)
Ground surface temperature	9.00 °C
Geothermal heat flux	0.0650 W/m²

BOREHOLE

Configuration:	3 ("4 : 1 x 4, line")
Borehole depth	50.00 m
Borehole spacing	4.00 m
Borehole installation	DOUBLE-U
Borehole diameter	130.00 mm
U-pipe diameter	25.000 mm
U-pipe thickness	2.300 mm
U-pipe thermal conductivity	0.420 W/(m·K)
U-pipe shank spacing	70.000 mm
Filling thermal conductivity	0.600 W/(m·K)
Contact resistance pipe/filling	0.0200 (m·K)/W

THERMAL RESISTANCES

Borehole thermal resistances are calculated.

Number of multipoles

4

Internal heat transfer between upward and downward channel(s) is considered.

HEAT CARRIER FLUID

Thermal conductivity	0.4530 W/(m·K)
Specific heat capacity	3565.000 J/(Kg·K)
Density	1068.000 Kg/m³
Viscosity	0.007600 Kg/(m·s)
Freezing point	-21.0 °C
Flow rate per borehole	0.3 l/s

Annual	DHW load				0.00	MWh	
Annual	heating .	load (D	HW e	xcluded)	29.03	MWh	
Annual	cooling 2	load			1.89	MWh	

Seasonal	performance	factor	(DHW)	3.00
Seasonal	performance	factor	(heating)	2.12
Seasonal	performance	factor	(cooling)	99999.00

Monthly energy profile [MWh]

Month	Factor	Heat load	Factor	Cool load	Ground load
JAN	0.155	4.50	0.000	0.00	2.377
FEB	0.148	4.30	0.000	0.00	2.270
MAR	0.125	3.63	0.000	0.00	1.917
APR	0.099	2.87	0.000	0.00	1.518
MAY	0.064	1.86	0.000	0.00	0.982
JUN	0.000	0.00	0.250	0.47	-0.473
JUL	0.000	0.00	0.500	0.94	-0.945
AUG	0.000	0.00	0.250	0.47	-0.473
SEP	0.061	1.77	0.000	0.00	0.936
OCT	0.087	2.53	0.000	0.00	1.334
NOV	0.117	3.40	0.000	0.00	1.794
DEC	0.144	4.18	0.000	0.00	2.208
Total	1.000	29.03	1.000	1.89	13.447

PEAK LOAD

Monthly	peak	powers	[kW]
---------	------	--------	------

Month	Peak heat	Duration	Peak cool	Duration [h]
JAN	17.00	24.0	0.00	0.0
FEB	17.00	24.0	0.00	0.0
MAR	17.00	12.0	0.00	0.0
APR	17.00	6.0	0.00	0.0
MAY	0.00	0.0	0.00	0.0
JUN	0.00	0.0	6.00	8.0
JUL	0.00	0.0	6.00	10.0
AUG	0.00	0.0	6.00	8.0
SEP	0.00	0.0	0.00	0.0
OCT	17.00	6.0	0.00	0.0
NOV	17.00	12.0	0.00	0.0
DEC	17.00	24.0	0.00	0.0
Number of	simulation years	5	10	
First mont	th of operation		FEB	

First month of operation F

CALCULATED VALUES

Total borehole length 200.00 m

THERMAL RESISTANCES

Borehole therm. res. internal $0.6625 (m \cdot K) / W$

Reynolds number

1184

Thermal resistance fluid/pipe	0.1757 (m·K)/W
Thermal resistance pipe material	0.0771 (m·K)/W
Contact resistance pipe/filling	0.0200 (m·K)/W
Borehole therm. res. fluid/ground	0.2088 (m·K)/W

```
Effective borehole thermal res. 0.2100 (m \cdot K)/W
```

SPECIFIC HEAT EXTRACTION RATE [W/m]

Month	Base load	Peak heat	Peak cool
JAN	16.28	44.91	-0.00
FEB	15.55	44.91	-0.00
MAR	13.13	44.91	-0.00
APR	10.40	44.91	-0.00
MAY	6.72	0.00	-0.00
JUN	-3.24	0.00	-30.00
JUL	-6.47	0.00	-30.00
AUG	-3.24	0.00	-30.00
SEP	6.41	0.00	-0.00
OCT	9.14	44.91	-0.00
NOV	12.29	44.91	-0.00
DEC	15.13	44.91	-0.00

BASE LOAD: MEAN FLUID TEMPERATURES (at end of month) [°C]

Year	1	2	5	10
JAN	10.08	-1.54	-2.95	-3.68
FEB	0.82	-1.54	-2.88	-3.60
MAR	1.51	-0.41	-1.70	-2.41

APR	2.70	1.06	-0.18	-0.88
MAY	4.65	3.22	2.03	1.35
JUN	10.56	9.28	8.14	7.47
JUL	12.91	11.75	10.66	10.00
AUG	11.44	10.37	9.32	8.68
SEP	5.88	4.90	3.89	3.26
OCT	3.94	3.04	2.06	1.44
NOV	1.72	0.89	-0.06	-0.68
DEC	-0.40	-1.17	-2.09	-2.70

BASE LOAD: YEAR 10

Minimum	mean	fluid	temperature	-3.68	°C	at	end	of	JAN
Maximum	mean	fluid	temperature	10.00	°C	at	end	of	JUL

PEAK HEAT LOAD: MEAN FLUID TEMPERATURES (at end of month) [°C]

Year	1	2	5	10
JAN	10.08	-13.09	-14.50	-15.23
FEB	-11.03	-13.38	-14.72	-15.44
MAR	-10.14	-12.06	-13.35	-14.06
APR	-8.68	-10.33	-11.56	-12.26
MAY	4.65	3.22	2.03	1.35
JUN	10.56	9.28	8.14	7.47
JUL	12.91	11.75	10.66	10.00
AUG	11.44	10.37	9.32	8.68
SEP	5.88	4.90	3.89	3.26
OCT	-7.86	-8.75	-9.73	-10.36
NOV	-10.24	-11.07	-12.02	-12.64
DEC	-12.41	-13.18	-14.10	-14.71

PEAK HEAT LOAD: YEAR 10

Minimum	mean	fluid	temperature	-15.44	°C	at	end	of	FEB
Maximum	mean	fluid	temperature	10.00	°C	at	end	of	JUL

PEAK COOL LOAD: MEAN FLUID TEMPERATURES (at end of month) [°C]

Year	1	2	5	10
JAN	10.08	-1.54	-2.95	-3.68
FEB	0.82	-1.54	-2.88	-3.60
MAR	1.51	-0.41	-1.70	-2.41
APR	2.70	1.06	-0.18	-0.88
MAY	4.65	3.22	2.03	1.35
JUN	19.80	18.51	17.38	16.71
JUL	21.31	20.15	19.06	18.40
AUG	20.67	19.61	18.56	17.91
SEP	5.88	4.90	3.89	3.26
OCT	3.94	3.04	2.06	1.44
NOV	1.72	0.89	-0.06	-0.68
DEC	-0.40	-1.17	-2.09	-2.70

PEAK COOL LOAD: YEAR 10						
Minimum mean fluid temperature	-3.68	°C	at	end	of	JAN
Maximum mean fluid temperature	18.40	°C	at	end	of	JUL

Appendix B. Output data file "Manual_x.out"

"Manual_x.out"

EED Version 3.05,	license for TE:	ST VERSION	
Input file:C:MA	NUAL_X.DAT		
This output file	e:MANUAL_X.OUT	Date: 5/26/2	2008 Time: 1:40:45 PM
MEMORY NOTES FOR 3	PROJECT		
-Example for Manua	al		
-EED Version 3.0			
QUICK FACTS			
Cost			-
Number of boreh	oles		4
Borehole depth			82.58 m
Total borehole	length		330.34 m
1	DESIGN 1	D А Т А	
:			
GROUND			
Ground thermal	conductivity		1.500 W/(m·K)
Ground heat cap	acity		1.800 MJ/(m ³ ·K)
Ground surface	temperature		9.00 °C
Geothermal heat	flux		0.0650 W/m ²
BOREHOLE			
Configuration:			3 ("4 : 1 x 4, line")
Borehole depth			82.58 m
Borehole spacing	g g		4.00 m
Borehole instal.	lation		DOUBLE-U
Borehole diameto	er		130.00 mm
U-pipe diameter			25.000 mm
U-pipe thicknes	5		2.300 mm
U-pipe thermal	conductivity		U.42U W/(m·K)
U-pipe shank spa	acing		/U.UUU mm
Filling thermal	conductivity		U.600 W/(m·K)
Contact resista	nce pipe/filling	g	U.U2UU (m·K)∕₩

THERMAL RESISTANCES

Borehole thermal resistances are calculated. Number of multipoles 4 Internal heat transfer between upward and downward channel(s) is considered. HEAT CARRIER FLUID 0.4530 W/(m·K) Thermal conductivity Specific heat capacity 3565.000 J/(Kg·K) Density 1068.000 Kg/m³ 0.007600 Kg/(m·s) Viscosity Freezing point -21.0 °C 0.270 l/s Flow rate per borehole BASE LOAD Annual DHW load 0.00 MWh 29.03 MWh Annual heating load (DHW excluded) Annual cooling load 1.89 MWh Seasonal performance factor (DHW) 3.00 Seasonal performance factor (heating) 2.12 Seasonal performance factor (cooling) 10000.00 Monthly energy profile [MWh] Month Factor Heat load Factor Cool load Ground load JAN 0.155 4.50 0.000 0.00 2.377 2.270 FEB 0.148 4.30 0.000 0.00 MAR 0.125 3.63 0.000 0.00 1.917 0.099 2.87 0.000 0.00 1.518 APR MAY 0.064 1.86 0.000 0.00 0.982 JUN 0.000 0.00 0.250 0.47 -0.473 0.000 0.00 0.500 0.94 -0.945 JUL 0.000 0.00 AUG 0.250 0.47 -0.473 SEP 0.061 1.77 0.000 0.00 0.936 0.087 2.53 0.000 0.00 1.334 OCT 1.794 0.117 3.40 0.000 0.00 NOV 0.00 DEC 0.144 4.18 0.000 2.208 _____ _____ _ _____ ____ 1.000 29.03 1.000 1.89 13.446 Total

PEAK LOAD

Monthly peak powers [kW]

Month	Peak heat	Duration	Peak coo	Duration [h]
JAN	17.00	24.0	0.00	0.0
FEB	17.00	24.0	0.00	0.0
MAR	17.00	12.0	0.00	0.0
APR	17.00	6.0	0.00	0.0
MAY	0.00	0.0	0.00	0.0
JUN	0.00	0.0	6.00	8.0
JUL	0.00	0.0	6.00	10.0
AUG	0.00	0.0	6.00	8.0
SEP	0.00	0.0	0.00	0.0
OCT	17.00	6.0	0.00	0.0
NOV	17.00	12.0	0.00	0.0
DEC	17.00	24.0	0.00	0.0
Number of	simulation years	5	10	
First mont	ch of operation		FEB	
Total bore	ehole length		330.34	m
THERMAL RES	ISTANCES			
Borehole t	cherm. res. inter	rnal	0.6625	(m·K) /W
Reynolds r	number		1184	
Thermal re	esistance fluid/p	pipe	0.1757	(m·K)/W
Thermal re	esistance pipe ma	aterial	0.0771	(m·K)/W
Contact re	esistance pipe/f:	illing	0.0200	(m·K)/W
Borehole t	therm. res. fluid	d/ground	0.2088	(m·K)/W
Effective	borehole therma	l res.	0.2121	(m·K) /W
SPECIFIC HEA	AT EXTRACTION RAT	FE [W/m]		
Month	Base loa	ad Peak i	heat Peak d	cool

	2000 2000	20411 11040	200012000
JAN	9.86	27.19	-0.00
FEB	9.41	27.19	-0.00
MAR	7.95	27.19	-0.00
APR	6.30	27.19	-0.00

MAY	4.	07	0.00	-0.00	
JUN	-1.	96	0.00	-18.17	
JUL	-3.	92	0.00	-18.17	
AUG	-1.	96	0.00	-18.17	
SEP	3.	88	0.00	-0.00	
OCT	5.	53	27.19	-0.00	
NOV	7.	44	27.19	-0.00	
DEC	9.	16	27.19	-0.00	
BASE LOAD:	MEAN FLUID 7	EMPERATURE	5 (at end	of month) [°C]	
Year	1	2	5	10	
JAN	10.79	3.69	2.68	2.14	
FEB	5.20	3.71	2.74	2.21	
MAR	5.58	4.39	3.46	2.93	
APR	6.27	5.27	4.38	3.86	
MAY	7.47	6.57	5.71	5.20	
JUN	11.05	10.23	9.40	8.90	
JUL	12.51	11.74	10.94	10.45	
AUG	11.64	10.92	10.15	9.66	
SEP	8.25	7.60	6.85	6.37	
OCT	7.03	6.43	5.71	5.24	
NOV	5.66	5.10	4.40	3.93	
DEC	4.38	3.85	3.17	2.71	
BASE LOAD:	year 10				
Minimum me	an fluid temp	perature		2.14 °C at e	end of JAN
Maximum me	an fluid temp	perature		10.45 °C at	end of JUL

PEAK HEAT LOAD: MEAN FLUID TEMPERATURES (at end of month) [°C]

Year	1	2	5	10
JAN	10.79	-3.33	-4.34	-4.89
FEB	-2.01	-3.49	-4.46	-5.00
MAR	-1.52	-2.70	-3.63	-4.16
APR	-0.66	-1.66	-2.56	-3.07
MAY	7.47	6.57	5.71	5.20
JUN	11.05	10.23	9.40	8.90
JUL	12.51	11.74	10.94	10.45
AUG	11.64	10.92	10.15	9.66
SEP	8.25	7.60	6.85	6.37
OCT	-0.15	-0.75	-1.48	-1.95
NOV	-1.62	-2.18	-2.88	-3.35

DEC	-2.93	-3.46	-4.14	-4.60	

PEAK HEAT LOAD: YEAF	R 10						
Minimum mean fluid t	temperature	-5.00	°C	at	end	of	FEB
Maximum mean fluid t	cemperature	10.45	°C	at	end	of	JUL

PEAK COOL LOAD: MEAN FLUID TEMPERATURES (at end of month) [°C]

Year	1	2	5	10
JAN	10.79	3.69	2.68	2.14
FEB	5.20	3.71	2.74	2.21
MAR	5.58	4.39	3.46	2.93
APR	6.27	5.27	4.38	3.86
MAY	7.47	6.57	5.71	5.20
JUN	16.68	15.85	15.02	14.52
JUL	17.62	16.85	16.05	15.56
AUG	17.26	16.55	15.78	15.29
SEP	8.25	7.60	6.85	6.37
OCT	7.03	6.43	5.71	5.24
NOV	5.66	5.10	4.40	3.93
DEC	4.38	3.85	3.17	2.71

PEAK COOL LOAD: YEAR 10 Minimum mean fluid temperature2.14 °C at end of JANMaximum mean fluid temperature15.56 °C at end of JUI

15.56 °C at end of JUL

Appendix C. Data output files

Data output files (for the first calculation in this manual)

tilulu.out.	tfl	luid.c	out:
-------------	-----	--------	------

tfmin.out:

1	-1.46234	1	-12.40748
2	-11.02517	2	-13.37751
3	-10.13564	3	-14.06348
4	-8.67796	4	-14.45232
5	4.64913	5	-14.72429
6	10.56454	6	-14.93410
7	12.90950	7	-15.10569
8	11.43602	8	-15.24368
9	5.87740	9	-15.35282
10	-7.85510	10	-15.44333
11	-10.23755		
12	-12.40748		
13	-13.08966		
14	-13.37751		
15	-12.05969		
16	-10.32548		
17	3.21811		
18	9.27671		
19	11.74868		
20	10.36958		
21	4.90147		
22	-8.75341		
23	-11.07001		

24	-13.18046
25	-13.81478
26	-14.06348
27	-12.71133
28	-10.94231
29	2.63565
30	8.72646
31	11.22884
32	9.87822
33	4.43218
34	-9.20399
35	-11.50335
36	-13.59785
37	-14.21738
38	-14.45232
39	-13.08735
40	-11.30582

(only first 40 of 120 values shown)

Appendix D. List of possible borehole configurations

SINGLE	
--------	--

No. BHE

1

Name single No. of configuration 0

Example (configuration #0):

LINE CONFIGURATION

No. BHE	Name	No. of configuration
2	1 x 2, line	1
3	1 x 3, line	2
:	:	:
20	1 x 20, line	19
25	1 x 25, line	20

Example (configuration #2):

L-CONFIGURATION

No. BHE	Name	No. of configuration
3	2 x 2, L-config 21	21
4	2 x 3, L-config 22	
:	:	:
11	2 x 10, L-config 29	
5	3 x 3, L-config 30	
6	3 x 4, L-config 31	
:	:	:
12	3 x 10, L-config 37	
7	4 x 4, L-config 38	
8	4 x 5, L-config 39	
:	:	:
13	4 x 10, L-config 44	
9	5 x 5, L-config 45	
10	5 x 6, L-config 46	
:	:	:
14	5 x 10, L-config 50	
11	6 x 6, L-config 51	
12	6 x 7, L-config 52	
:	:	:
15	6 x 10, L-config 55	
13	7 x 7, L-config 56	
14	7 x 8, L-config 57	
:	:	:
16	7 x 10, L-config 59	
15	8 x 8, L-config 60	
16	8 x 9, L-config 61	

17	8 x 10, L-config 62	
17	9 x 9, L-config 63	
18	9 x 10, L-config 64	
19	10 x 10, L-config	65

Example (configuration #31):

L-config., 3 x 4 boreholes, total 6 boreholes

L2-CONFIGURATION

No. BHE	Name	No. of configuration
8	3 x 3, L2-config 66	
10	3 x 4, L2-config 67	
:	:	:
22	3 x 10, L2-config	73
12	4 x 4, L2-config 74	
14	4 x 5, L2-config 75	
:	:	:
24	4 x 10, L2-config	80
16	5 x 5, L2-config 81	81
18	5 x 6, L2-config 82	
:	:	:
26	5 x 10, L2-config	86
20	6 x 6, L2-config 87	
22	6 x 7, L2-config 88	
:	:	:
28	6 x 10, L2-config	91
24	7 x 7, L2-config 92	
26	7 x 8, L2-config 93	
:	:	:
30	7 x 10, L2-config	95
28	8 x 8, L2-config 96	
30	8 x 9, L2-config 97	
32	8 x 10, L2-config	98
32	9 x 9, L2-config 99	
34	9 x 10, L2-config	100
36	10 x 10, L2-config	101

Example (configuration #67):

L2-config., 3 x 4 boreholes, total 10 boreholes

U-CONFIGURATION

No. BHE	Name	No. of configuration
5	3 x 2, U-config 102	
7	3 x 3, U-config 103	
:	:	:
21	3 x 10, U-config 110	
6	4 x 2, U-config 111	
8	4 x 3, U-config 112	
:	:	:
22	4 x 10, U-config 119	

No. BHE	Name	No. of configuration
7	5 x 2, U-config 120	
9	5 x 3, U-config 121	
:	:	:
23	5 x 10, U-config 128	
8	6 x 2, U-config 129	
10	6 x 3, U-config 130	
:	:	:
24	6 x 10, U-config 137	
9	7 x 2, U-config 138	
11	7 x 3, U-config 139	
:	:	:
25	7 x 10, U-config 146	
10	8 x 2, U-config 147	
12	8 x 3, U-config 148	
:	:	:
26	8 x 10, U-config 155	

11	9 x 2, U-config	156	
13	9 x 3, U-config	157	
:	:	:	
27	9 x 10, U-config	164	
12	10 x 2, U-config	165	
14	10 x 3, U-config	166	
28	10 x 10, U-conf	g 1	73

Example (configuration #112):

U-config., 3 x 4 boreholes, total 8 boreholes

OPEN RECTANGULAR CONFIGURATION

No. BHE	Name	No. of configuration
8	3 x 3, open rect.174	
10	3 x 4, open rect.	175
:	:	:
52	3 x 25, open rect.	187
No. BHE	Name	No. of configuration
12	4 x 4, open rect.	188

14

4 x 5, open rect.189

54	4 x 25, open rect.	200
16	5 x 5, open rect.	201
18	5 x 6, open rect.	202
:	:	:
46	5 x 20, open rect.	211
20	6 x 6, open rect.	212
22	6 x 7, open rect.213	
:	:	:
40	6 x 16, open rect.	219
24	7 x 7, open rect.220	
26	7 x 8, open rect.	221
:	:	:
38	7 x 14, open rect.	225
28	8 x 8, open rect.	226
30	8 x 9, open rect.227	
:	:	:
36	8 x 12, open rect.	229
32	9 x 9, open rect.230	
34	9 x 10, open rect.	231
36	10 x 10, open rect.	232

Example (configuration #188):

Open rectangular config., 4 x 4 boreholes, total 12 boreholes

No. BHE	Name	No. of configuration
4	2 x 2, rectangle	233
6	2 x 3, rectangle	234
:	:	
20	2 x 10, rectangle	241
22	2 x 11, rectangle	242 //comments EED 3.0 has new numbers from 242
:	:	
100	2 x 50, rectangle	281
9	3 x 3, rectangle	282
:	:	
150	3 x 50, rectangle	329
16	4 x 4, rectangle	330
:	:	
200	4 x 50, rectangle	376
25	5 x 5, rectangle	377
250	5 x 50, rectangle	422
36	6 x 6, rectangle	423
:	:	
300	6 x 50, rectangle	467
49	7 x 7, rectangle	468
:	:	
350	7 x 50, rectangle	511
64	8 x 8, rectangle	512
:	:	
400	8 x 50, rectangle	554
81	9 x 9, rectangle	555
:	:	

405	9 x 45, rectangle	591
100	10 x 10, rectangle	592
:	:	
400	10 x 40, rectangle	622
121	11 x 11, rectangle	623
:	:	
407	11 x 37, rectangle	649
144	12 x 12, rectangle	650
:	:	
403	13 x 31, rectangle	691
196	14 x 14, rectangle	692
:	:	
406	14 x 29, rectangle	707
225	15 x 15, rectangle	708
:	:	
405	15 x 27, rectangle	720
256	16 x 16, rectangle	721
:	:	
400	16 x 25, rectangle	730
289	17 x 17, rectangle	731
:	:	
408	17 x 24, rectangle	738
324	18 x 18, rectangle	739
396	18 x 22, rectangle	743
361	19 x 19, rectangle	744
380	19 x 20, rectangle	745
399	19 x 21, rectangle	746

Example (configuration #330):

Filled rectangular config., 4 x 4 boreholes, total 16 boreholes

LARGE RECTANGULAR CONFIGURATION 1:1

441	21 x 21, rectangle	748
484	22 x 22, rectangle	749
529	23 x 23, rectangle	750
576	24 x 24, rectangle	751
625	25 x 25, rectangle	752
676	26 x 26, rectangle	753
729	27 x 27, rectangle	754
784	28 x 28, rectangle	755
841	29 x 29, rectangle	756
900	30 x 30, rectangle	757
961	31 x 31, rectangle	758
1024	32 x 32, rectangle	759
1089	33 x 33, rectangle	760
1156	34 x 34, rectangle	761
LARGE	RECTANGULAR CONFIG	URATION 1:2
450	15 x 30, rectangle	762
512	16 x 32, rectangle	763

- 578 17 x 34, rectangle 764
- 648 18 x 36, rectangle 765

80

400

722	19 x 38, rectangle	766
800	20 x 40, rectangle	767
882	21 x 42, rectangle	768
968	22 x 44, rectangle	769
1058	23 x 46, rectangle	770
1152	24 x 48, rectangle	771

LARGE RECTANGULAR CONFIGURATION 1:3

432	12 x 36, rectangle	772
507	13 x 39, rectangle	773
588	14 x 42, rectangle	774
675	15 x 45, rectangle	775
768	16 x 48, rectangle	776
867	17 x 51, rectangle	777
972 :	18 x 54, rectangle	778
1083	19 x 57, rectangle	779
1200	20 x 60, rectangle	780

LARGE RECTANGULAR CONFIGURATION 1:4

484	11 x 44, rectangle	781
576	12 x 48, rectangle	782
676	13 x 52, rectangle	783
784	14 x 56, rectangle	784
900	15 x 60, rectangle	785
1024	16 x 64, rectangle	786
1156	17 x 68, rectangle	787
LARGE	RECTANGULAR CON	FIGURATION
405	9 x 45, rectangle	788
500	10 x 50, rectangle	789
605	11 x 55, rectangle	790

720	12 x 60, rectangle	791
	.,	

- 845 13 x 65, rectangle 792
- 980 14 x 70, rectangle 793

LARGE RECTANGULAR CONFIGURATION 3:4

1:5

- 432 18 x 24, rectangle 794
- 588
 21 x 28, rectangle
 795
- 720 24 x 30, rectangle 796
- 972 27 x 36, rectangle 797

