ISO 10077-2 validation of HEAT2 v7+v8, revised June 16, 2014

Thermal conductance $\boldsymbol{L}^{^{2D}}$, thermal transmittance $\boldsymbol{U}^{^{f}}$ and **linear** thermal transmittance $\boldsymbol{\Psi}$:

	ISO 10077	HEAT2	Nodes	CPU		ISO 10077	HEAT2	
Case	<i>L</i> ^{2D} W/(m⋅K)	<i>L</i> ^{2D} W/(m⋅K)			Diff	<i>U</i> ^f W/(m ² ⋅K)	<i>U</i> ^f W/(m ² ⋅K)	Diff
D1	0,550±0,007	0,5499	47 000	17s	0%	3,22±0,06	3,218	0%
		0,5511	524000	30min				
D2	0,263±0,001	0,2643	62000	6s	0,5%	1,44±0,03	1,457	1,2%
		0,2644	1E6	30min				
D3	0,424±0,006	0,4264	37000	3s	0,6%	2,07±0,06	2,096	1,2%
D4	0,346±0,001	0,3456	76000	3s	0%	1,36±0,01	1,361	0%
D5	0,408±0,007	0,4042	85000	10s	0,9%	2,08±0,08	2,047	-1,6%
D6	0,659±0,008	0,6588	61000	37s	0%	4,67±0,09	4,673	0%
		0,6599	460000	22min	0.1%			
	(***)	0,6563	98000		0.5%		4,647	0.5%
D7	0,285±0,002	0,2830	85000	4s	0,7%	1,31±0,03	1,270	-3,0%
	(***)	0,2827			0,8%		1.263	-3,6%
D8	0,181±0,003	0,1805	83000	6s	0%	1,03±0,02*	1,020	0%
D9	0,207±0,001	0,2067	59000	2s	0%	3,64±0,01**	3,627	0%

	ISO 10077	HEAT2	Nodes	CPU		ISO 10077	HEAT2	
Case	L ^{2D} W/(m⋅K)	L ^{2D} W/(m⋅K)			Diff	Ψ W/(m⋅K)	Ψ W/(m⋅K)	Diff
D10	0,481±0,004	0,4854 0,4858	76 000 624000	4s 160s	0,9 %	0,084±0,004	0,0877	4,4 %

EN ISO 10077-2 states that the difference of L^{2D} should not be more than 3%. HEAT2 gives a maximum difference of 0,9% and complies to the standard.

The HEAT2 calculations actually use more nodes than needed (according to EN ISO 10211:2007) in order to get higher accuracy. In fact, about 2000 nodes are sufficient for case D1 to comply with the EN ISO 10211-2 requirement for mesh sub-division (this will give $L^{2D} = 0.540$, i.e. about 2% difference from 0.5511). Note that HEAT2 calculates each case within a few seconds even with a large amount of nodes.

- "CPU" is the calculation time on a Intel Core 2 Duo 2,4 GHz.

- Values in blue are calculated using a special version of HEAT2 with 4 million nodes.

- (*) This value should probably be 1,02±0,02 (because 0,181/0,177=1,023).

- (**) This value should probably be 3,63±0,02 (because 0,207/0,057=3,632).

(***) Notes on sloping external boundaries:

We have a comment on how to treat sloping boundaries; see e.g. case D6 and D7.

There is a need to adjust the thermal resistance of a numerical cell lying at a boundary when a sloping boundary is approximated by steps in order to simulate a boundary condition with a temperature and a surface resistance, or a given heat flux, correctly. HEAT2 v8 is capable of handling this automatically, see chapter 4.4 in http://www.buildingphysics.com/manuals/HEAT2 update.pdf

Without this correction, the boundary resistances will be somewhat too low (leading to a somewhat too high total heat flow. The surface temperatures will be too low on the cold side, and too high on the warm side.

The difference for the total heat flow is only a few per-mille for the cases D6 and D7, so the correction here is a bit academic. There could however be cases where the correction can lead to many per cents difference of the total heat flow (and of course surface temperatures).

We have sent a note about this to the ISO committee.

See comments for cases D6 and D7 below.

Input given in pre-processor:

Frame cavities are drawn using the item "Frame cavity" in the material list. Note that coherent "Frame cavity" rectangles will produce a final cavity, see e.g. the three rectangles marked in red below (rectangle marked "4, 9, 10" in figure further down). Also note that two points to open boundary segments is placed here (to be able to give different boundary conditions with R=0.13 and R=0.20):

Generated frame cavity numbers (1-11) and boundary segments (1-12):

Boundary conditions (1-4) specified for boundary segments numbers (1-12):

ÓD B	🏙 Boundary conditions (F6)								
Number of types > 4									
n	type	Bounds	functior	q [W/m²]	Temp [°C]	Resistance [m²·K/W]			
1	Q=const	Default	1	0.00000	1 I I				
2	T=const	1-3	1		0.00000	0.040000			
3	T=const	5811	1		20.00000	0.130000			
4	T=const	67910			20.00000	0.200000			
Close									

Frame cavity options dialogue:

🚳 Frame cavity options 📃 🗖 🔀					
Method for calculating equivalent thermal conductivity:					
O 1 Use CEN/ISO 10077-2 with current boundary air temperatures					
C 2 Use CEN/ISO 10077-2 with Tmin=5 and Tmax=15 degC					
G 3 Use Tmin and Tmax as given below and apply CEN/ISO correlations					
 4 Calculate temperatures iteratively in each cavity and apply CEN/ISO correlations 					
Use following temperatures (option 3):					
Tmin: 0.0000 degC Tmax: 20.0000 degC					
Iterations between update (option 4):					
100 🛨					
Main direction of heat flow in cavities:					
Automatically determine					
C Force in x-direction					
C Force in y-direction					
Emissivity:					
e: 0.90 (0.01 - 0.99)					

Calculated temperatures and isotherms:

Post-processor 144096 pixels drawn (598x282) -Flows File Options Bounds I and Q Tools Settings Plot 3D q [W/m²] 1567.4 1489 1410.7 (0.073) 1332.3 1253.9 (0.0999) (0.1087) 1175.6 1097.2 1018.8 (0.1033) 940.48 862.11 783.74 705.38 (0.1691) 627.01 (0.1269) 548.64 (0.0855) 470.28 391.91 313.54 (0.1134) (0.1029) 235.18 156.81 (0.0898) (0.0447) 78.446 0.0795 ର୍ 🌒 🛉 Т Qarr С Mat Q lso Mes<u>h</u> Tools Small win <u>R</u>estore

Calculated heat flow intensities and equivalent thermal conductivities for the cavities:

Calculated heat flows:

🛍 Boundary heat flows (F11)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Heat flows for each BC: BC q [W/m] [2] -10.998 (T=0 R=0.04) [3] 8.9117 (T=20 R=0.13) [4] 2.0869 (T=20 R=0.2) Sum: 0.0002							

The info log (F12) gives calculated equivalent thermal conductivity for the cavities:

🚳 Info log (F12)								
						1	÷.	
Cavity	Tmax	Tmin	ha	hr	lambda	Iter:135		
1	11.537	2.2704	1.5333	2.2199	0.1691			
2	11.564	11.385	1.0417	3.2612	0.1033			
3	11.391	2.2375	1.527	3.0556	0.1029			
4	13.258	2.2116	1.6258	2.862	0.1134			
5	13.431	11.451	0.9167	2.9349	0.1087			
6	2.6717	1.6755	3,125	2.4877	0.0898	(=2*lambda)		
7	2.6747	2.617	4.1667	3.2898	0.0447			
8	13.42	13.268	0.9259	2.7753	0.0999			
9	13.275	2.6732	1.6037	2.5829	0.0855			
10	13.4	2.5597	1.6156	2.3922	0.1269			
11	13.444	13.369	1.6667	3.2007	0.073	-	2	
						<u>\</u>	^	
						> ,	i.	

The thermal conductance becomes using the heat flow through the external boundary (see above)

$$L^{2D} = 10,998/20=0,5499 \text{ W/(m·K)}$$

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0.5499 - 1.03093 \cdot 0.19)/0.11 = 3.218 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

where

- 1. Open file ISO10077_D1.dat
- 2. Start the calculation (press F9)
- 3. Answer yes on the question "Cavity number 6 lies at a boundary. Do you want to use twice the equivalent lambda?". This is a slightly ventilated cavity, see standard.

HEAT2 will recognize all 6 cavities, see numbers below. It is enough to draw two "Frame cavity" rectangles in order to encapsulate cavity 1 and 2, respectively, see rectangles marked in red below.

3

Mes<u>h</u>

Tools

Small win

1

lso

Qarr

T Q

Mat

Frame ex. (h)

<u>R</u>estore

С

Note that for the aluminum part with cavities 4 and 6 it is enough to draw one aluminum rectangle plus 4 "Frame cavity" rectangles (in total 5 drawn rectangles):

These five rectangles added gives:

Alternatively, this could have been made with six drawn aluminum rectangles:

Pre-processor ISO10077_D2_SLASK2.H2P	×
Eile Edit Layers <u>V</u> iew <u>M</u> aterials <u>S</u> ettings Mes <u>h</u> < <u>U</u> pdate OK>	
📉 🗖 🥙 🖳 🥙 🔛 🧶 📰 📕 🗖 🛞 + 🛛 😂 ++T dim x dim	y
1:0.4	
· · · · · · · · · · · · · · · · · · ·	
Lock x, y = (0.054, -0.097) dx=0.002 dy=0.017 x: (0.042, 0.044) y: (-0.093, -0.076) Frame ex. (b) Aluminium (v=160 (v=1	

The thermal conductance becomes

L^{2D} = 5,2862/20=0,2643 W/(m·K)

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0.2643 - 0.54730 \cdot 0.19)/0.11 = 1.457 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

where

$$U_p = 1/(0,13+0,04+0,058/0,035) = 0,54730 W/(m^2 \cdot K)$$

- 1. Open file ISO10077_D2.dat
- 2. Start the calculation (press F9)
- 3. Answer **no** on the question "Cavity number 2 lies at a boundary. Do you want to use twice the equivalent lambda?"

HEAT2 will recognize all 12 cavities. It is enough to draw one "Frame cavity" in order to encapsulate cavity 1, see red rectangle below (this rectangle could also have filled the cavity area).

The thermal conductance becomes

Sum flows: -6.1E-6 W/m Sum pos flows: 8.5274 W/m

Heat flows for each BC: BC q [W/m] [2] -8.5274 [3] 6.7903 [4] 1.7371 Sum:-5.7E-6

 $\begin{array}{c} (T{=}0\ R{=}0.04) \\ (T{=}20\ R{=}0.13) \\ (T{=}20\ R{=}0.2) \end{array}$

₩∕m

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,4264 - 1,03093 \cdot 0,19)/0,11 = 2,096 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

where

$$U_p = 1/(0,13+0,04+0,028/0,035) = 1,03093 W/(m^2 \cdot K)$$

- 1. Open file ISO10077_D3.dat
- 2. Start the calculation (press F9)

Input:

Generated cavities:

🗿 Boundary hea	t flows (F11))				×
$\begin{array}{c c} {\rm Bound} & {\rm q} \\ [W/m^2] \\ 1 & -24.747 \\ 2 & -16.598 \\ 3 & -20.48 \\ 5 & 20.751 \\ 6 & 19.412 \\ 7 & 14.481 \\ 8 & 17.629 \\ 9 & 15.738 \\ 10 & 24.505 \\ 11 & 34.326 \\ {\rm Sum \ flows:} \\ {\rm Sum \ pos \ flows} \end{array}$	q [₩/m] -2.7222 -0.2988 -3.8913 3.3202 0.5824 0.5358 1.4808 0.2675 0.4166 0.3089 -3.4E-5 ↓ : 6.9122 ↓	length [m] 0.11 0.018 0.19 0.16 0.03 0.037 0.084 0.017 0.009 V/m V/m	BC [2] [2] [3] [4] [4] [4] [4] [3]	$\begin{array}{c} T=0 & 1 \\ T=0 & 1 \\ T=20 & 1 \\ T=20 & T=20 \\ T=20 & T=20 \\ T=20 & T=20 \\ T=20 & T=20 \end{array}$	R=0.04 R=0.04 R=0.13 R=0.2 R=0.2 R=0.2 R=0.2 R=0.2 R=0.13 R=0.2	
Heat flows fo EC [2] [3] [4] Sum	r each BC: q [W/m] -6.9122 5.1099 1.8023 :-3.4E-5	(T=0 R=0 (T=20 R= (T=20 R=	0.04) =0.13 =0.2)) 3))		1. 6

The thermal conductance becomes

L^{2D} = 6,9122/20=0,3456 W/(m·K)

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,3456 - 1,03093 \cdot 0,19)/0,11 = 1,361 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

where

- 1. Open file ISO10077_D4.dat
- 2. Start the calculation (press F9)
- 3. Answer yes on the question "Cavity number 2 lies at a boundary. Do you want to use twice the equivalent lambda?"

Input in pre-processor:

Generated frame cavities:

In this case we have a heat flow mainly in the x-direction for cavity 1, and a heat flow mainly in the y-direction for cavities 2, 4, 5. Since HEAT2 assumes the same direction for all cavities we need to make two different calculations. In the first one we state that the heat flow is mainly in the x-direction. This will give the equivalent thermal conductivity of cavity 1.

To make this calculation please do as follows:

1. Open file ISO10077_D5.dat

3.

2. Start the calculation (press F9)

🚳 Frame cavities 🛛 🔀
Frame cavities have been found but main direction of heat flows could not be established from current boundary conditions. Check main direction of heat flows: • x-direction • y-direction

4. Answer **no** on the question "Cavity number 1 lies at a boundary. Do you want to use twice the equivalent lambda?" and yes for cavities 2 and 4.

The info log (press F12) shows that the calculated equivalent thermal conductivity of cavity 1 is 0.0691.

🕮 Info log (F12)								
Cavity	Tmax	Tmin	ha	hr	lambda	Iter:20	~	
1	7.4748	0.6413	2.0032	3.5371	0.0691		_	
2	8.92	0.4462	1.6119	3.3159	0.1529	(=2*lambda)		
3	14.757	9.5777	8.3333	4.0177	0.0371			
4	1.6399	0.498	1.5884	2.5654	0.1308	(=2*lambda)		
5	10.378	1.1838	5	3.6933	0.0435			
							~	
							>	

After this we make a new material in the material list with lambda=0.0691 and replaces the area for cavity 1 with the new material:

This is available here:

- 1. Open file **ISO10077_D5_equivalentTC.dat** (this will use the material file DEFAULT_ISO10077_D5.MTL. Make sure this file exists in the same folder as HEAT2.exe).
- 2. Start the calculation (press F9) with main direction of heat flow set to y-direction:

4. Answer yes on the question "Cavity number 1 lies at a boundary. Do you want to use twice the equivalent lambda?" and for cavity 3 (new cavity numbers are assigned).

Se boundary near nons (i i i		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<pre>length BC [m] 0.054 [2] T=0 R=0.04 0.006 [2] T=0 R=0.04 0.003 [2] T=0 R=0.04 0.19 [2] T=0 R=0.04 0.19 [2] T=0 R=0.04 0.19 [3] T=20 R=0.13 0.03 [4] T=20 R=0.2 0.056 [4] T=20 R=0.2 0.007 [4] T=20 R=0.2 0.003 [4] T=20 R=0.2 0.004 [3] T=20 R=0.13 0.012 [2] T=0 R=0.04 0.011 [2] T=0 R=0.04 0.02 [2] T=0 R=0.04 0.02 [2] T=0 R=0.04 0.02 [2] T=0 R=0.04 0.014 [2] T=0 R=0.04 [2]</pre>	
Heat flows for each BC BC q [W/m] [2] -8.0836 [3] 4.3579 [4] 3.7258 Sum: 0.0001	: (T=0 R=0.04) (T=20 R=0.13) (T=20 R=0.2)	

The thermal conductance becomes

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,4042 - 1,16861 \cdot 0,19)/(0,089 = 2,047 \text{ W}/(\text{m}^{2} \cdot \text{K}))$$

where

$$U_p = 1/(0,13+0,04+0,024/0,035) = 1,16861 W/(m^2 \cdot K)$$

Input:

Left: HEAT2 7. Right: HEAT2 8 using polygons.

Generated frame cavities:

Boundary conditions:

	[HEAT2 Version 8)	: First,	turn off	"Do correction	for slo	ped boundaries	;"):
. 1	/	/					

	Boundary conditions (F6)									
	Number of types > 4									
	Do corre	ection for sloped bour	ndaries							
	type	Bounds	function	q [W/m²]	Temp [°C]	R [m²·K/₩]				
1	Q=const	🛃 Default		0.00000]			
2	T=const	1-143			0.00000	0.040000]			
3	T=const	145 148 1	53		20.00000	0.130000				
4	T=const	146 147 1	49- ⁻		20.00000	0.200000				
							-			
		<u>I</u> <u>C</u> lose		🕃 Update gra	ohics					

The thermal conductance becomes

$$L^{2D} = 13,173/20 = 0,6587 \text{ W/(m·K)}$$

and the thermal transmittance becomes

$$\boldsymbol{U}^{\mathsf{t}} = (\boldsymbol{L}^{\mathsf{2D}} - \mathbf{U}_{\mathsf{p}} \cdot \mathbf{b}_{\mathsf{p}}) / \mathbf{b}_{\mathsf{f}} = (0.6587 - 1.13086 \cdot 0.19) / 0.095 = 4.673 \text{ W} / (\text{m}^2 \cdot \text{K})$$

where

$$U_p = 1/(0,13+0,04+0,025/0,035) = 1,13086 W/(m^2 \cdot K)$$

- 1. Open file ISO10077_D6.dat
- 2. Start the calculation (press F9)

(***) Notes on sloping external boundaries:

There is a need to adjust the thermal resistance of a numerical cell lying at a boundary when a sloping boundary is approximated by steps in order to simulate a boundary condition with a temperature and a surface resistance, or a given heat flux, correctly. HEAT2 v8 is capable of handling this automatically, see chapter 4.4 in <u>http://www.buildingphysics.com/manuals/HEAT2 8 update.pdf</u>

With the correction below ("Do correction for sloped boundaries") we get the results below.

Bo	Boundary conditions (F6)									
	Number of types > 4									
	Do correctio	n for sloped boundari	ies							
	type	Bounds	function	q [W/m²]	Temp [°C]	R [m²·K/₩]				
1	Q=const	🛓 Default		0.00000			1			
2	T=const	1-143			0.00000	0.040000				
3	T=const	145 148 153			20.00000	0.130000				
4	T=const	146 147 149-1		r I I	20.00000	0.200000				
		<u>I</u> <u>C</u> lose	0	Update gra	phics					

The thermal conductance becomes

 L^{2D} = 13,126/20=0,6563 W/(m·K) (0.4% off ISO 10077-2 value 0,659)

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,6563 - 1,13086 \cdot 0,19)/0,095 = 4,647 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

So we get a thermal transmittance of U=4,647 which compared to the ISO value 4,67 differs by 0.5 %.

Input:

Left: HEAT2 7. Right: HEAT2 8 using polygons.

Generated frame cavities:

Boundary conditions:

[HEAT2 Version 8): First, turn off "Do correction for sloped boundaries"):

The thermal conductance becomes

$$L^{2D} = 5,66/20 = 0,2830 \text{ W/(m·K)}$$

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,2830 - 1,16861 \cdot 0,19)/0,048 = 1,270 \text{ W}/(\text{m}^{2} \cdot \text{K})$$

where

$$U_p = 1/(0,13+0,04+0,024/0,035) = 1,16861 W/(m^2 \cdot K)$$

- 1. Open file ISO10077_D7.dat
- 2. Start the calculation (press F9)

3. Answer yes on the question "Cavity number 1 lies at a boundary. Do you want to use twice the equivalent lambda?"

The calculated equivalent thermal conductivities for each cavity are shown below:

Cavity	Tmax	Tmin	ha	hr	lambda
1	1.7388	0.6173	3.125	2.2591	0.0861
2	8.1271	1.9951	1.3362	2.4042	0.1175
3	12.834	7.0669	1.4973	3.1444	0.0775
4	18.127	12.558	1.2939	3.0094	0.1154
5	6.6104	0.4316	1.3395	2.7467	0.1087
6	15.524	13.411	3.9657	3.2042	0.0452
7	13.562	3.2534	1.5888	2.2387	0.1148
8	17.749	13.651	1.3158	2.8785	0.0797

The standard says that "when no other information is available, use Tm= 283 K". If we change the option from the default "4 Calculate temperatures iteratively in each cavity" to "2 Use Tmin= 5 and Tmax=15" we get Tm=283.

🚳 Frame cavity options 📃 🗖 🔀						
Method for calculating equivalent thermal conductivity (EN ISO 10077-2):						
C 1 Use current boundary air temperatures						
2 Use Tmin=5 and Tmax=15 degC						
C 3 Use Tmin and Tmax as given below						
C 4 Calculate temperatures iteratively in each cavity						
Use following temperatures (option 3):						
Tmin: 0.0000 degC Tmax: 20.0000 degC						
Iterations between update (option 4):						
100						
Main direction of heat flow in cavities:						
Automatically determine						
C Force in x-direction						
C Force in y-direction						
Emissivity.						
e: 0.30 (0.01 - 0.99)						

Cavity	Tmax	Tmin	ha	hr	lambda
1	1.7397	0.6177	3.125	2.4926	0.0899
2	8.1267	1.9959	1.57	2.5431	0.1292
3	12.833	7.0662	1.57	3.1566	0.0789
4	18.126	12.557	1.57	2.8548	0.1186
5	6.6098	0.4317	1.57	2.9542	0.1204
6	15.524	13.41	3.965	7 3.0675	0.0443
7	13.561	3.2531	1.57	2.2846	0.1156
8	17.749	13.65	1.57	2.7205	0.0815

The thermal conductance becomes

$$L^{2D} = 5,6864/20 = 0,2843 W/(m \cdot K)$$

and the thermal transmittance becomes

 $\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0.2843 - 1.16861 \cdot 0.19)/0.048 = 1.298 \text{ W}/(\text{m}^{2} \cdot \text{K})$

(***) Notes on sloping external boundaries:

There is a need to adjust the thermal resistance of a numerical cell lying at a boundary when a sloping boundary is approximated by steps in order to simulate a boundary condition with a temperature and a surface resistance, or a given heat flux, correctly. HEAT2 v8 is capable of handling this automatically, see chapter 4.4 in http://www.buildingphysics.com/manuals/HEAT2 update.pdf

We need to make this correction for boundaries 2-273, see picture below. In this case, we cannot use the automatic option "Do correction for sloped boundaries", since HEAT2 v8 will identify sloping boundaries for number 2-273 (which is correct) but also for number 278-281 (which is not correct). (The automatically identified boundaries for correction are by the way shown in the log, menu option F12 in HEAT2 v8.)

Therefore, we will make this correction by hand for boundaries 2-273 as described below.

The original boundary conditions are

Bot	Boundary conditions (F6)								
	Number of types > 4								
	Do correction for	r sloped bounda	aries						
	type	Bounds	function	q [W/m²]	Temp [°C]	R [m²·K/₩]			
1	Q=const	Default		0.00000					
2	T=const	1-275			0.00000	0.040000			
3	T=const	277 282			20.00000	0.130000			
4	T=const	278-281			20.00000	0.200000			
		Close	0	Update grap	ohics				

The new corrected boundary conditions should be (see file ISO10077_D7_CorrectedBC.dat):

Bot	undary conditi Number of types	ons (F6)					X
	🔲 Do correctio	n for sloped bounda	_l aries				
	type	Bounds	function	q [W/m²]	Temp [°C]	R [m²·K/W]	Τ
1	Q=const	Default		0.00000			
2	T=const	1 274 275		1	0.00000	0.040000	
3	T=const	277 282			20.00000	0.130000	
4	T=const	278-281		1	20.00000	0.200000	
5	T=const	2-273			0.00000	0.055000	
		<u>I</u> lose	2	Update gra	ohics		

Here, we define a new BC type(5) and use the corrected boundary resistance which is calculated using the total width (w=17 mm) and height (h=29 mm) of the steps 2-273. The correction factor is $(w+h)/\sqrt{w^2 + h^2} = 1,368$. The corrected boundary resistance is then 1,368x0.04=0.055.

The calculated thermal conductance becomes then

L^{2D} = 5,6535/20=0,2827 W/(m·K) (0,8% off ISO 10077-2 value 0,285)

and the thermal transmittance becomes

$$\boldsymbol{U}^{f} = (\boldsymbol{L}^{2D} - \boldsymbol{U}_{p} \cdot \boldsymbol{b}_{p})/\boldsymbol{b}_{f} = (0,2827 - 1,16861 \cdot 0,19)/(0,048 = 1,263 \text{ W}/(m^{2} \cdot K))$$

So we get a thermal transmittance of U=1.263 which compared to the ISO value 1.31 differs by 3,6%.

Note: The difference for the heat flow using correction or not, is only about 0.1% (0,2830/0,2827) in this case due to the low boundary resistance (0.04). However, if the thermal boundary resistance increases, the difference will increase. If we e.g. would have change the external and internal boundary conditions (using R=0.13 for the sloping boundaries), the difference of the heat flow would have been 0.2-0.3% instead.

Input:

Generated frame cavities:

🚳 Boundary heat flows (F11)	X
Bound q q length BC [W/m²] [W/m] [m] 1 -28.002 -1.0921 0.039 [3] T=0 R=0.04 3 18.49 1.8305 0.099 [2] T=20 R=0.13 4 10.059 1.7804 0.177 [2] T=20 R=0.13 6 -14.231 -2.5189 0.177 [3] T=0 R=0.04 Sum flows: -4.8E-5 W/m Sum pos flows: 3.6109 W/m	<
Heat flows for each BC: BC q [W/m] [2] 3.6109 (T=20 R=0.13) [3] -3.611 (T=0 R=0.04) Sum:-4.8E-5	× 1. <

The thermal conductance becomes

L^{2D} = 3,6109/20=0,1805 W/(m·K)

and the thermal transmittance becomes

$$U^{f} = L^{2D}/b_{sb} = 0,1805/0,177 = 1,020 W/(m^{2} \cdot K)$$

- 1. Open file ISO10077_D8.dat
- 2. Start the calculation (press F9)
- 3. Answer yes on the question "Cavity number 1 lies at a boundary. Do you want to use twice the equivalent lambda?"

Input:

61 Pi	re-pi	rocesso	r ISO	10077	_D9.H2	Р						
<u>F</u> ile	<u>E</u> dit	Layers	<u>V</u> iew	<u>M</u> aterials	; <u>S</u> ettin	gs Mes <u>h</u>	< <u>U</u> pda	ate OK>				
X		0	20	: 🔈	🕺 🗔		× +	× B	0	←→T	dim x o	dim y
1:0.55	5											
				- -			ਜੀΓ					
	-						<u>'</u> ll					
[m]												
Loci	< 8.	y = (-0.0	175,0	.0105)d	x=0.012	dy=0.00!	5 x:(-0.02 , -	0.008)	y: (0.00)10,0.00)6)
Frame	e cavi	ity					lx=1		ly=1		C=1	

Generated frame cavities:

Calculated heat flows:

ÖØ P	ost-pro	cessor 2	5648 pi	xels d	rawn (43	59x56) -Flows			
Eile	Options	<u>B</u> ounds	<u>I</u> and Q	Too <u>l</u> s	<u>S</u> ettings	<u>P</u> lot 30	>			
										q [W/m²]
					ļ					210.27 173.64 137.02 100.39 63.757 27.128
										 ⊜,⊕, ♦ ┥
Mat	Т	Q Is	o Qarr	Mes	n Too	ols (Small win	0	<u>R</u> estore	

👹 Boundary heat flows (F11)	×
Bound q q length BC [W/m ²] [W/m] [m] 1 -72.538 -4.1347 0.057 [3] T=0 R=0.04 3 72.539 4.1347 0.057 [2] T=20 R=0.13 Sum flows: 3.9E-6 W/m Sum pos flows: 4.1347 W/m	~
Heat flows for each BC: BC q [W/m] [2] 4.1347 (T=20 R=0.13) [3] -4.1347 (T=0 R=0.04) Sum: 3.8E-6	. <

The thermal conductance becomes

$$L^{2D} = 4,1347/20 = 0,2067 W/(m \cdot K)$$

and the thermal transmittance becomes

$$U^{f} = L^{2D}/b = 0,2067/0,057=3,627 W/(m^{2} \cdot K)$$

- 1. Open file ISO10077_D9.dat
- 2. Start the calculation (press F9)

Input:

Generated frame cavities:

🚳 Boundary hea	t flows (F11)	
Bound q [W/m ²] 1 −26.67 2 −47.364 3 −31.166 5 28.66 6 41.297 7 27.528 8 21.796 9 16.727 10 25.404 11 35.299 Sum flows: Sum pos flows	q length [₩/m] [m] -2.9337 0.11 -0.8525 0.018 -5.9216 0.19 4.5856 0.16 1.2389 0.03 1.0185 0.037 1.8309 0.084 0.2844 0.017 0.4319 0.017 0.3177 0.009 -3.7E-5 ₩/m :: 9.7078 ₩/m	BC [2] T=0 R=0.04 [2] T=0 R=0.04 [3] T=20 R=0.13 [4] T=20 R=0.2 [4] T=20 R=0.2 [3] T=20 R=0.13 [4] T=20 R=0.2 [4] T=20 R=0.2 [4] T=20 R=0.2 [4] T=20 R=0.13 [5] T=20 R=0.13
Heat flows fo BC [2] [3] [4] Sum [r each BC: q [V/m] -9.7078 (T=0 R= 6.7341 (T=20 R 2.9737 (T=20 R :-3.7E-5	0.04) =0.13) =0.2)

The thermal conductance becomes

$$L_{\psi}^{2D} = 9,7078/20 = 0,4854 \text{ W/(m·K)}$$

and the linear thermal transmittance $oldsymbol{\Psi}$ becomes

$$\Psi = L_{\Psi}^{2D} - U_{f} \cdot b_{f} - U_{g} \cdot b_{g} = 0.4854 - 1.361 \cdot 0.11 - 1.3051 \cdot 0.19 = 0.0877 \text{ W/(m·K)}$$

where \boldsymbol{U}_{f} is taken from case D4 and

- 1. Open file ISO10077_D10.dat
- 2. Start the calculation (press F9)
- 3. Answer yes on the question "Cavity number 2 lies at a boundary. Do you want to use twice the equivalent lambda?"